1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
|
import numpy as np
import random
from vprtw_aco_figure import VrptwAcoFigure
from vrptw_base import VrptwGraph, PathMessage
from ant import Ant
from threading import Thread, Event
from queue import Queue
from concurrent.futures import ThreadPoolExecutor
import copy
import time
from multiprocessing import Process
from multiprocessing import Queue as MPQueue
class MultipleAntColonySystem:
"""
Attributes
----------
graph : VrptwGraph
ants_num : int
max_load : int
beta : float
Heuristic information importance (relative to pheromones)
q0 : float
Probability of directly selecting the next point with highest
probability ??
"""
def __init__(self, graph: VrptwGraph, ants_num=10, beta=1, q0=0.1, whether_or_not_to_show_figure=True):
super()
# The location and service time information of graph nodes
self.graph = graph
# ants_num number of ants
self.ants_num = ants_num
# vehicle_capacity represents the maximum load per vehicle
self.max_load = graph.vehicle_capacity
# beta heuristic information importance
self.beta = beta
# q0 represents the probability of directly selecting the next point
# with the highest probability
self.q0 = q0
# best path
self.best_path_distance = None
self.best_path = None
self.best_vehicle_num = None
self.whether_or_not_to_show_figure = whether_or_not_to_show_figure
@staticmethod
def stochastic_accept(index_to_visit, transition_prob):
"""
Roulette
:param index_to_visit: a list of N index (list or tuple)
:param transition_prob:
:return: selected index
"""
# calculate N and max fitness value
N = len(index_to_visit)
# normalize
sum_tran_prob = np.sum(transition_prob)
norm_transition_prob = transition_prob/sum_tran_prob
# select: O(1)
while True:
# randomly select an individual with uniform probability
ind = int(N * random.random())
if random.random() <= norm_transition_prob[ind]:
return index_to_visit[ind]
@staticmethod
def new_active_ant(ant: Ant, vehicle_num: int, local_search: bool,
IN: np.numarray, q0: float, beta: int, stop_event: Event):
"""
Explore the map according to the specified vehicle_num. The vehicle num
used cannot be more than the specified number. This method is used by
both acs_time and acs_vehicle
For acs_time, it is necessary to visit all nodes (the path is
feasible), and try to find a path with a shorter travel distance
For acs_vehicle, the vehicle num used will be one less vehicle than the
number of vehicles used by the currently found best path. To use fewer
vehicles, try to visit the nodes. If all nodes are visited (the path is
feasible), it will notify macs
Parameters
----------
ant : Ant
vehicle_num : int
local_search : bool
IN : numpy.numarray
??? (variable compartida entre acs_vehicle y acs_time a traves de
macs. Pero que info tiene???
q0 : float
beta : int
stop_event : threading.Event
Returns
-------
"""
# print('[new_active_ant]: start, start_index %d' % ant.travel_path[0])
# In new_active_ant, up to vehicle_num vehicles can be used, that is, it
# can contain up to vehicle_num+1 depot nodes. Since one departure node
# is used up, only vehicle depots are left.
unused_depot_count = vehicle_num
# If there are still unvisited nodes, and you can also return to the depot
while not ant.index_to_visit_empty() and unused_depot_count > 0:
if stop_event.is_set():
# print('[new_active_ant]: receive stop event')
return
# Calculate all next nodes that satisfy constraints such as load
next_index_meet_constrains = ant.cal_next_index_meet_constrains()
# If there is no next node that meets the limit, go back to the depot
if len(next_index_meet_constrains) == 0:
ant.move_to_next_index(0)
unused_depot_count -= 1
continue
# Start calculating the next node that satisfies the constraints,
# and select the probability of each node
length = len(next_index_meet_constrains)
ready_time = np.zeros(length)
due_time = np.zeros(length)
for i in range(length):
ready_time[i] = ant.graph.nodes[next_index_meet_constrains[i]].ready_time
due_time[i] = ant.graph.nodes[next_index_meet_constrains[i]].due_time
delivery_time = np.maximum(ant.vehicle_travel_time \
+ ant.graph.node_dist_mat[ant.current_index][next_index_meet_constrains], ready_time)
delta_time = delivery_time - ant.vehicle_travel_time
distance = delta_time * (due_time - ant.vehicle_travel_time)
distance = np.maximum(1.0, distance - IN[next_index_meet_constrains])
closeness = 1/distance
transition_prob = ant.graph.pheromone_mat[ant.current_index][next_index_meet_constrains] * \
np.power(closeness, beta)
transition_prob = transition_prob / np.sum(transition_prob)
# Directly select the node with the largest closeness according to the probability
if np.random.rand() < q0:
max_prob_index = np.argmax(transition_prob)
next_index = next_index_meet_constrains[max_prob_index]
else:
# Use the roulette algorithm
next_index = MultipleAntColonySystem.stochastic_accept(next_index_meet_constrains, transition_prob)
# update pheromone matrix
ant.graph.local_update_pheromone(ant.current_index, next_index)
ant.move_to_next_index(next_index)
# If you finish all the points, you need to go back to the depot
if ant.index_to_visit_empty():
ant.graph.local_update_pheromone(ant.current_index, 0)
ant.move_to_next_index(0)
# Insert unvisited points to ensure that the path is feasible
ant.insertion_procedure(stop_event)
# ant.index_to_visit_empty()==True means Feasible
if local_search is True and ant.index_to_visit_empty():
ant.local_search_procedure(stop_event)
@staticmethod
def acs_time(new_graph: VrptwGraph, vehicle_num: int, ants_num: int, q0: float, beta: int,
global_path_queue: Queue, path_found_queue: Queue, stop_event: Event):
"""
For acs_time, it is necessary to visit all nodes (the path is feasible),
and try to find a path with a shorter travel distance
:param new_graph:
:param vehicle_num:
:param ants_num:
:param q0:
:param beta:
:param global_path_queue:
:param path_found_queue:
:param stop_event:
:return:
"""
# 最多可以使用vehicle_num辆车,即在path中最多包含vehicle_num+1个depot中,找到路程最短的路径,
# vehicle_num设置为与当前的best_path一致
print('[acs_time]: start, vehicle_num %d' % vehicle_num)
# 初始化信息素矩阵
global_best_path = None
global_best_distance = None
ants_pool = ThreadPoolExecutor(ants_num)
ants_thread = []
ants = []
while True:
print('[acs_time]: new iteration')
if stop_event.is_set():
print('[acs_time]: receive stop event')
return
for k in range(ants_num):
ant = Ant(new_graph, 0)
thread = ants_pool.submit(MultipleAntColonySystem.new_active_ant, ant, vehicle_num, True,
np.zeros(new_graph.node_num), q0, beta, stop_event)
ants_thread.append(thread)
ants.append(ant)
# 这里可以使用result方法,等待线程跑完
for thread in ants_thread:
thread.result()
ant_best_travel_distance = None
ant_best_path = None
# 判断蚂蚁找出来的路径是否是feasible的,并且比全局的路径要好
for ant in ants:
if stop_event.is_set():
print('[acs_time]: receive stop event')
return
# 获取当前的best path
if not global_path_queue.empty():
info = global_path_queue.get()
while not global_path_queue.empty():
info = global_path_queue.get()
print('[acs_time]: receive global path info')
global_best_path, global_best_distance, global_used_vehicle_num = info.get_path_info()
# 路径蚂蚁计算得到的最短路径
if ant.index_to_visit_empty() and (ant_best_travel_distance is None or ant.total_travel_distance < ant_best_travel_distance):
ant_best_travel_distance = ant.total_travel_distance
ant_best_path = ant.travel_path
# 在这里执行信息素的全局更新
new_graph.global_update_pheromone(global_best_path, global_best_distance)
# 向macs发送计算得到的当前的最佳路径
if ant_best_travel_distance is not None and ant_best_travel_distance < global_best_distance:
print('[acs_time]: ants\' local search found a improved feasible path, send path info to macs')
path_found_queue.put(PathMessage(ant_best_path, ant_best_travel_distance))
ants_thread.clear()
for ant in ants:
ant.clear()
del ant
ants.clear()
@staticmethod
def acs_vehicle(new_graph: VrptwGraph, vehicle_num: int, ants_num: int, q0: float, beta: int,
global_path_queue: Queue, path_found_queue: Queue, stop_event: Event):
"""
For acs_vehicle, the vehicle num used will be one less vehicle than the
number of vehicles used by the currently found best path. To use fewer
vehicles, try to visit the nodes. If all nodes are visited (the path is
feasible), it will notify macs
Parameters
----------
new_graph : VrptwGraph
global_path_queue : queue.Queue
path_found_queue : queue.Queue
stop_event : threading.Event
"""
# vehicle_num设置为比当前的best_path少一个
print('[acs_vehicle]: start, vehicle_num %d' % vehicle_num)
global_best_path = None
global_best_distance = None
# 使用nearest_neighbor_heuristic算法初始化path 和distance
current_path, current_path_distance, _ = new_graph.nearest_neighbor_heuristic(max_vehicle_num=vehicle_num)
# 找出当前path中未访问的结点
current_index_to_visit = list(range(new_graph.node_num))
for ind in set(current_path):
current_index_to_visit.remove(ind)
ants_pool = ThreadPoolExecutor(ants_num)
ants_thread = []
ants = []
IN = np.zeros(new_graph.node_num)
while True:
print('[acs_vehicle]: new iteration')
if stop_event.is_set():
print('[acs_vehicle]: receive stop event')
return
for k in range(ants_num):
ant = Ant(new_graph, 0)
thread = ants_pool.submit(MultipleAntColonySystem.new_active_ant,
ant, vehicle_num, False, IN, q0,
beta, stop_event)
ants_thread.append(thread)
ants.append(ant)
# Here you can use the result method to wait for the thread to finish running
for thread in ants_thread:
thread.result()
for ant in ants:
if stop_event.is_set():
print('[acs_vehicle]: receive stop event')
return
IN[ant.index_to_visit] = IN[ant.index_to_visit]+1
# Compare the path found by the ants with the current_path,
# whether it can use vehicle_num vehicles to visit more nodes
if len(ant.index_to_visit) < len(current_index_to_visit):
current_path = copy.deepcopy(ant.travel_path)
current_index_to_visit = copy.deepcopy(ant.index_to_visit)
current_path_distance = ant.total_travel_distance
# and set IN to 0
IN = np.zeros(new_graph.node_num)
# If this path is feasible, it should be sent to macs_vrptw
if ant.index_to_visit_empty():
print('[acs_vehicle]: found a feasible path, send path info to macs')
path_found_queue.put(PathMessage(ant.travel_path, ant.total_travel_distance))
# Update pheromone in new_graph, global
new_graph.global_update_pheromone(current_path, current_path_distance)
if not global_path_queue.empty():
info = global_path_queue.get()
while not global_path_queue.empty():
info = global_path_queue.get()
print('[acs_vehicle]: receive global path info')
global_best_path, global_best_distance, global_used_vehicle_num = info.get_path_info()
new_graph.global_update_pheromone(global_best_path, global_best_distance)
ants_thread.clear()
for ant in ants:
ant.clear()
del ant
ants.clear()
def run_multiple_ant_colony_system(self, file_to_write_path=None):
"""
Start another thread to run multiple_ant_colony_system, use the main thread for drawing
"""
path_queue_for_figure = MPQueue()
multiple_ant_colony_system_thread = Process(target=self._multiple_ant_colony_system, args=(path_queue_for_figure, file_to_write_path, ))
multiple_ant_colony_system_thread.start()
# Whether to show figure
if self.whether_or_not_to_show_figure:
figure = VrptwAcoFigure(self.graph.nodes, path_queue_for_figure)
figure.run()
multiple_ant_colony_system_thread.join()
def _multiple_ant_colony_system(self, path_queue_for_figure: MPQueue, file_to_write_path=None):
"""
Call acs_time and acs_vehicle for path exploration
:param path_queue_for_figure:
:return:
"""
if file_to_write_path is not None:
file_to_write = open(file_to_write_path, 'w')
else:
file_to_write = None
start_time_total = time.time()
# Two queues are needed here, time_what_to_do, vehicle_what_to_do, to
# tell the two threads acs_time and acs_vehicle what the current best
# path is, or let them stop computing
global_path_to_acs_time = Queue()
global_path_to_acs_vehicle = Queue()
# Another queue, path_found_queue, is to receive acs_time and
# acs_vehicle calculated by acs_vehicle that is even better than the
# best path. Feasible path
path_found_queue = Queue()
# Initialize using the nearest neighbor algorithm
self.best_path, self.best_path_distance, self.best_vehicle_num = self.graph.nearest_neighbor_heuristic()
path_queue_for_figure.put(PathMessage(self.best_path, self.best_path_distance))
while True:
print('[multiple_ant_colony_system]: new iteration')
start_time_found_improved_solution = time.time()
# The information of the current best path is placed in the queue to
# inform acs_time and acs_vehicle what the current best_path is
global_path_to_acs_vehicle.put(PathMessage(self.best_path, self.best_path_distance))
global_path_to_acs_time.put(PathMessage(self.best_path, self.best_path_distance))
stop_event = Event()
# acs_vehicle, try to explore with self.best_vehicle_num-1 vehicles, visit more nodes
graph_for_acs_vehicle = self.graph.copy(self.graph.init_pheromone_val)
acs_vehicle_thread = Thread(target=MultipleAntColonySystem.acs_vehicle,
args=(graph_for_acs_vehicle, self.best_vehicle_num-1, self.ants_num, self.q0,
self.beta, global_path_to_acs_vehicle, path_found_queue, stop_event))
# acs_time try to explore with self.best_vehicle_num vehicles to find a shorter path
graph_for_acs_time = self.graph.copy(self.graph.init_pheromone_val)
acs_time_thread = Thread(target=MultipleAntColonySystem.acs_time,
args=(graph_for_acs_time, self.best_vehicle_num, self.ants_num, self.q0, self.beta,
global_path_to_acs_time, path_found_queue, stop_event))
# Start acs_vehicle_thread and acs_time_thread, when they find a
# feasible and better path than the best path, they will be sent to
# macs
print('[macs]: start acs_vehicle and acs_time')
acs_vehicle_thread.start()
acs_time_thread.start()
best_vehicle_num = self.best_vehicle_num
while acs_vehicle_thread.is_alive() and acs_time_thread.is_alive():
# Exit the program if no better results are found within the specified time
given_time = 10
if time.time() - start_time_found_improved_solution > 60 * given_time:
stop_event.set()
self.print_and_write_in_file(file_to_write, '*' * 50)
self.print_and_write_in_file(file_to_write, 'time is up: cannot find a better solution in given time(%d minutes)' % given_time)
self.print_and_write_in_file(file_to_write, 'it takes %0.3f second from multiple_ant_colony_system running' % (time.time()-start_time_total))
self.print_and_write_in_file(file_to_write, 'the best path have found is:')
self.print_and_write_in_file(file_to_write, self.best_path)
self.print_and_write_in_file(file_to_write, 'best path distance is %f, best vehicle_num is %d' % (self.best_path_distance, self.best_vehicle_num))
self.print_and_write_in_file(file_to_write, '*' * 50)
# Pass in None as the end flag
if self.whether_or_not_to_show_figure:
path_queue_for_figure.put(PathMessage(None, None))
if file_to_write is not None:
file_to_write.flush()
file_to_write.close()
return
if path_found_queue.empty():
continue
path_info = path_found_queue.get()
print('[macs]: receive found path info')
found_path, found_path_distance, found_path_used_vehicle_num = path_info.get_path_info()
while not path_found_queue.empty():
path, distance, vehicle_num = path_found_queue.get().get_path_info()
if distance < found_path_distance:
found_path, found_path_distance, found_path_used_vehicle_num = path, distance, vehicle_num
if vehicle_num < found_path_used_vehicle_num:
found_path, found_path_distance, found_path_used_vehicle_num = path, distance, vehicle_num
# If the distance of the found path (which is feasible) is
# shorter, update the current best path information
if found_path_distance < self.best_path_distance:
# Better search results, update start_time
start_time_found_improved_solution = time.time()
self.print_and_write_in_file(file_to_write, '*' * 50)
self.print_and_write_in_file(file_to_write, '[macs]: distance of found path (%f) better than best path\'s (%f)' % (found_path_distance, self.best_path_distance))
self.print_and_write_in_file(file_to_write, 'it takes %0.3f second from multiple_ant_colony_system running' % (time.time()-start_time_total))
self.print_and_write_in_file(file_to_write, '*' * 50)
if file_to_write is not None:
file_to_write.flush()
self.best_path = found_path
self.best_vehicle_num = found_path_used_vehicle_num
self.best_path_distance = found_path_distance
# If you need to draw graphics, send the best path to be found to the drawing program
if self.whether_or_not_to_show_figure:
path_queue_for_figure.put(PathMessage(self.best_path, self.best_path_distance))
# Notify the two threads of acs_vehicle and acs_time, the
# currently found best_path and best_path_distance
global_path_to_acs_vehicle.put(PathMessage(self.best_path, self.best_path_distance))
global_path_to_acs_time.put(PathMessage(self.best_path, self.best_path_distance))
# If the paths found by the two threads use fewer vehicles, stop
# the two threads and start the next iteration
# Send stop messages to acs_time and acs_vehicle
if found_path_used_vehicle_num < best_vehicle_num:
# Better search results, update start_time
start_time_found_improved_solution = time.time()
self.print_and_write_in_file(file_to_write, '*' * 50)
self.print_and_write_in_file(file_to_write, '[macs]: vehicle num of found path (%d) better than best path\'s (%d), found path distance is %f'
% (found_path_used_vehicle_num, best_vehicle_num, found_path_distance))
self.print_and_write_in_file(file_to_write, 'it takes %0.3f second multiple_ant_colony_system running' % (time.time() - start_time_total))
self.print_and_write_in_file(file_to_write, '*' * 50)
if file_to_write is not None:
file_to_write.flush()
self.best_path = found_path
self.best_vehicle_num = found_path_used_vehicle_num
self.best_path_distance = found_path_distance
if self.whether_or_not_to_show_figure:
path_queue_for_figure.put(PathMessage(self.best_path, self.best_path_distance))
# Stop the acs_time and acs_vehicle threads
print('[macs]: send stop info to acs_time and acs_vehicle')
# Notify the two threads of acs_vehicle and acs_time, the
# currently found best_path and best_path_distance
stop_event.set()
@staticmethod
def print_and_write_in_file(file_to_write=None, message='default message'):
if file_to_write is None:
print(message)
else:
print(message)
file_to_write.write(str(message)+'\n')
|