diff options
Diffstat (limited to 'multiple_ant_colony_system.py')
| -rw-r--r-- | multiple_ant_colony_system.py | 187 |
1 files changed, 117 insertions, 70 deletions
diff --git a/multiple_ant_colony_system.py b/multiple_ant_colony_system.py index 751a441..45c896a 100644 --- a/multiple_ant_colony_system.py +++ b/multiple_ant_colony_system.py @@ -13,17 +13,30 @@ from multiprocessing import Queue as MPQueue class MultipleAntColonySystem: + """ + Attributes + ---------- + graph : VrptwGraph + ants_num : int + max_load : int + beta : float + Heuristic information importance (relative to pheromones) + q0 : float + Probability of directly selecting the next point with highest + probability ?? + """ def __init__(self, graph: VrptwGraph, ants_num=10, beta=1, q0=0.1, whether_or_not_to_show_figure=True): super() - # graph 结点的位置、服务时间信息 + # The location and service time information of graph nodes self.graph = graph - # ants_num 蚂蚁数量 + # ants_num number of ants self.ants_num = ants_num - # vehicle_capacity 表示每辆车的最大载重 + # vehicle_capacity represents the maximum load per vehicle self.max_load = graph.vehicle_capacity - # beta 启发性信息重要性 + # beta heuristic information importance self.beta = beta - # q0 表示直接选择概率最大的下一点的概率 + # q0 represents the probability of directly selecting the next point + # with the highest probability self.q0 = q0 # best path self.best_path_distance = None @@ -35,7 +48,7 @@ class MultipleAntColonySystem: @staticmethod def stochastic_accept(index_to_visit, transition_prob): """ - 轮盘赌 + Roulette :param index_to_visit: a list of N index (list or tuple) :param transition_prob: :return: selected index @@ -55,41 +68,60 @@ class MultipleAntColonySystem: return index_to_visit[ind] @staticmethod - def new_active_ant(ant: Ant, vehicle_num: int, local_search: bool, IN: np.numarray, q0: float, beta: int, stop_event: Event): + def new_active_ant(ant: Ant, vehicle_num: int, local_search: bool, + IN: np.numarray, q0: float, beta: int, stop_event: Event): """ - 按照指定的vehicle_num在地图上进行探索,所使用的vehicle num不能多于指定的数量,acs_time和acs_vehicle都会使用到这个方法 - 对于acs_time来说,需要访问完所有的结点(路径是可行的),尽量找到travel distance更短的路径 - 对于acs_vehicle来说,所使用的vehicle num会比当前所找到的best path所使用的车辆数少一辆,要使用更少的车辆,尽量去访问结点,如果访问完了所有的结点(路径是可行的),就将通知macs - :param ant: - :param vehicle_num: - :param local_search: - :param IN: - :param q0: - :param beta: - :param stop_event: - :return: + Explore the map according to the specified vehicle_num. The vehicle num + used cannot be more than the specified number. This method is used by + both acs_time and acs_vehicle + + For acs_time, it is necessary to visit all nodes (the path is + feasible), and try to find a path with a shorter travel distance + + For acs_vehicle, the vehicle num used will be one less vehicle than the + number of vehicles used by the currently found best path. To use fewer + vehicles, try to visit the nodes. If all nodes are visited (the path is + feasible), it will notify macs + + Parameters + ---------- + ant : Ant + vehicle_num : int + local_search : bool + IN : numpy.numarray + ??? (variable compartida entre acs_vehicle y acs_time a traves de + macs. Pero que info tiene??? + q0 : float + beta : int + stop_event : threading.Event + + Returns + ------- """ # print('[new_active_ant]: start, start_index %d' % ant.travel_path[0]) - # 在new_active_ant中,最多可以使用vehicle_num个车,即最多可以包含vehicle_num+1个depot结点,由于出发结点用掉了一个,所以只剩下vehicle个depot + # In new_active_ant, up to vehicle_num vehicles can be used, that is, it + # can contain up to vehicle_num+1 depot nodes. Since one departure node + # is used up, only vehicle depots are left. unused_depot_count = vehicle_num - # 如果还有未访问的结点,并且还可以回到depot中 + # If there are still unvisited nodes, and you can also return to the depot while not ant.index_to_visit_empty() and unused_depot_count > 0: if stop_event.is_set(): # print('[new_active_ant]: receive stop event') return - # 计算所有满足载重等限制的下一个结点 + # Calculate all next nodes that satisfy constraints such as load next_index_meet_constrains = ant.cal_next_index_meet_constrains() - # 如果没有满足限制的下一个结点,则回到depot中 + # If there is no next node that meets the limit, go back to the depot if len(next_index_meet_constrains) == 0: ant.move_to_next_index(0) unused_depot_count -= 1 continue - # 开始计算满足限制的下一个结点,选择各个结点的概率 + # Start calculating the next node that satisfies the constraints, + # and select the probability of each node length = len(next_index_meet_constrains) ready_time = np.zeros(length) due_time = np.zeros(length) @@ -98,38 +130,39 @@ class MultipleAntColonySystem: ready_time[i] = ant.graph.nodes[next_index_meet_constrains[i]].ready_time due_time[i] = ant.graph.nodes[next_index_meet_constrains[i]].due_time - delivery_time = np.maximum(ant.vehicle_travel_time + ant.graph.node_dist_mat[ant.current_index][next_index_meet_constrains], ready_time) + delivery_time = np.maximum(ant.vehicle_travel_time \ + + ant.graph.node_dist_mat[ant.current_index][next_index_meet_constrains], ready_time) delta_time = delivery_time - ant.vehicle_travel_time distance = delta_time * (due_time - ant.vehicle_travel_time) - distance = np.maximum(1.0, distance-IN[next_index_meet_constrains]) + distance = np.maximum(1.0, distance - IN[next_index_meet_constrains]) closeness = 1/distance transition_prob = ant.graph.pheromone_mat[ant.current_index][next_index_meet_constrains] * \ np.power(closeness, beta) transition_prob = transition_prob / np.sum(transition_prob) - # 按照概率直接选择closeness最大的结点 + # Directly select the node with the largest closeness according to the probability if np.random.rand() < q0: max_prob_index = np.argmax(transition_prob) next_index = next_index_meet_constrains[max_prob_index] else: - # 使用轮盘赌算法 + # Use the roulette algorithm next_index = MultipleAntColonySystem.stochastic_accept(next_index_meet_constrains, transition_prob) - # 更新信息素矩阵 + # update pheromone matrix ant.graph.local_update_pheromone(ant.current_index, next_index) ant.move_to_next_index(next_index) - # 如果走完所有的点了,需要回到depot + # If you finish all the points, you need to go back to the depot if ant.index_to_visit_empty(): ant.graph.local_update_pheromone(ant.current_index, 0) ant.move_to_next_index(0) - # 对未访问的点进行插入,保证path是可行的 + # Insert unvisited points to ensure that the path is feasible ant.insertion_procedure(stop_event) - # ant.index_to_visit_empty()==True就是feasible的意思 + # ant.index_to_visit_empty()==True means Feasible if local_search is True and ant.index_to_visit_empty(): ant.local_search_procedure(stop_event) @@ -137,7 +170,8 @@ class MultipleAntColonySystem: def acs_time(new_graph: VrptwGraph, vehicle_num: int, ants_num: int, q0: float, beta: int, global_path_queue: Queue, path_found_queue: Queue, stop_event: Event): """ - 对于acs_time来说,需要访问完所有的结点(路径是可行的),尽量找到travel distance更短的路径 + For acs_time, it is necessary to visit all nodes (the path is feasible), + and try to find a path with a shorter travel distance :param new_graph: :param vehicle_num: :param ants_num: @@ -216,16 +250,17 @@ class MultipleAntColonySystem: def acs_vehicle(new_graph: VrptwGraph, vehicle_num: int, ants_num: int, q0: float, beta: int, global_path_queue: Queue, path_found_queue: Queue, stop_event: Event): """ - 对于acs_vehicle来说,所使用的vehicle num会比当前所找到的best path所使用的车辆数少一辆,要使用更少的车辆,尽量去访问结点,如果访问完了所有的结点(路径是可行的),就将通知macs - :param new_graph: - :param vehicle_num: - :param ants_num: - :param q0: - :param beta: - :param global_path_queue: - :param path_found_queue: - :param stop_event: - :return: + For acs_vehicle, the vehicle num used will be one less vehicle than the + number of vehicles used by the currently found best path. To use fewer + vehicles, try to visit the nodes. If all nodes are visited (the path is + feasible), it will notify macs + + Parameters + ---------- + new_graph : VrptwGraph + global_path_queue : queue.Queue + path_found_queue : queue.Queue + stop_event : threading.Event """ # vehicle_num设置为比当前的best_path少一个 print('[acs_vehicle]: start, vehicle_num %d' % vehicle_num) @@ -253,13 +288,14 @@ class MultipleAntColonySystem: for k in range(ants_num): ant = Ant(new_graph, 0) - thread = ants_pool.submit(MultipleAntColonySystem.new_active_ant, ant, vehicle_num, False, IN, q0, + thread = ants_pool.submit(MultipleAntColonySystem.new_active_ant, + ant, vehicle_num, False, IN, q0, beta, stop_event) ants_thread.append(thread) ants.append(ant) - # 这里可以使用result方法,等待线程跑完 + # Here you can use the result method to wait for the thread to finish running for thread in ants_thread: thread.result() @@ -271,20 +307,21 @@ class MultipleAntColonySystem: IN[ant.index_to_visit] = IN[ant.index_to_visit]+1 - # 蚂蚁找出来的路径与current_path进行比较,是否能使用vehicle_num辆车访问到更多的结点 + # Compare the path found by the ants with the current_path, + # whether it can use vehicle_num vehicles to visit more nodes if len(ant.index_to_visit) < len(current_index_to_visit): current_path = copy.deepcopy(ant.travel_path) current_index_to_visit = copy.deepcopy(ant.index_to_visit) current_path_distance = ant.total_travel_distance - # 并且将IN设置为0 + # and set IN to 0 IN = np.zeros(new_graph.node_num) - # 如果这一条路径是feasible的话,就要发到macs_vrptw中 + # If this path is feasible, it should be sent to macs_vrptw if ant.index_to_visit_empty(): print('[acs_vehicle]: found a feasible path, send path info to macs') path_found_queue.put(PathMessage(ant.travel_path, ant.total_travel_distance)) - # 更新new_graph中的信息素,global + # Update pheromone in new_graph, global new_graph.global_update_pheromone(current_path, current_path_distance) if not global_path_queue.empty(): @@ -304,14 +341,13 @@ class MultipleAntColonySystem: def run_multiple_ant_colony_system(self, file_to_write_path=None): """ - 开启另外的线程来跑multiple_ant_colony_system, 使用主线程来绘图 - :return: + Start another thread to run multiple_ant_colony_system, use the main thread for drawing """ path_queue_for_figure = MPQueue() multiple_ant_colony_system_thread = Process(target=self._multiple_ant_colony_system, args=(path_queue_for_figure, file_to_write_path, )) multiple_ant_colony_system_thread.start() - # 是否要展示figure + # Whether to show figure if self.whether_or_not_to_show_figure: figure = VrptwAcoFigure(self.graph.nodes, path_queue_for_figure) figure.run() @@ -319,7 +355,7 @@ class MultipleAntColonySystem: def _multiple_ant_colony_system(self, path_queue_for_figure: MPQueue, file_to_write_path=None): """ - 调用acs_time 和 acs_vehicle进行路径的探索 + Call acs_time and acs_vehicle for path exploration :param path_queue_for_figure: :return: """ @@ -330,14 +366,18 @@ class MultipleAntColonySystem: start_time_total = time.time() - # 在这里需要两个队列,time_what_to_do、vehicle_what_to_do, 用来告诉acs_time、acs_vehicle这两个线程,当前的best path是什么,或者让他们停止计算 + # Two queues are needed here, time_what_to_do, vehicle_what_to_do, to + # tell the two threads acs_time and acs_vehicle what the current best + # path is, or let them stop computing global_path_to_acs_time = Queue() global_path_to_acs_vehicle = Queue() - # 另外的一个队列, path_found_queue就是接收acs_time 和acs_vehicle计算出来的比best path还要好的feasible path + # Another queue, path_found_queue, is to receive acs_time and + # acs_vehicle calculated by acs_vehicle that is even better than the + # best path. Feasible path path_found_queue = Queue() - # 使用近邻点算法初始化 + # Initialize using the nearest neighbor algorithm self.best_path, self.best_path_distance, self.best_vehicle_num = self.graph.nearest_neighbor_heuristic() path_queue_for_figure.put(PathMessage(self.best_path, self.best_path_distance)) @@ -345,25 +385,28 @@ class MultipleAntColonySystem: print('[multiple_ant_colony_system]: new iteration') start_time_found_improved_solution = time.time() - # 当前best path的信息,放在queue中以通知acs_time和acs_vehicle当前的best_path是什么 + # The information of the current best path is placed in the queue to + # inform acs_time and acs_vehicle what the current best_path is global_path_to_acs_vehicle.put(PathMessage(self.best_path, self.best_path_distance)) global_path_to_acs_time.put(PathMessage(self.best_path, self.best_path_distance)) stop_event = Event() - # acs_vehicle,尝试以self.best_vehicle_num-1辆车去探索,访问更多的结点 + # acs_vehicle, try to explore with self.best_vehicle_num-1 vehicles, visit more nodes graph_for_acs_vehicle = self.graph.copy(self.graph.init_pheromone_val) acs_vehicle_thread = Thread(target=MultipleAntColonySystem.acs_vehicle, args=(graph_for_acs_vehicle, self.best_vehicle_num-1, self.ants_num, self.q0, self.beta, global_path_to_acs_vehicle, path_found_queue, stop_event)) - # acs_time 尝试以self.best_vehicle_num辆车去探索,找到更短的路径 + # acs_time try to explore with self.best_vehicle_num vehicles to find a shorter path graph_for_acs_time = self.graph.copy(self.graph.init_pheromone_val) acs_time_thread = Thread(target=MultipleAntColonySystem.acs_time, args=(graph_for_acs_time, self.best_vehicle_num, self.ants_num, self.q0, self.beta, global_path_to_acs_time, path_found_queue, stop_event)) - # 启动acs_vehicle_thread和acs_time_thread,当他们找到feasible、且是比best path好的路径时,就会发送到macs中来 + # Start acs_vehicle_thread and acs_time_thread, when they find a + # feasible and better path than the best path, they will be sent to + # macs print('[macs]: start acs_vehicle and acs_time') acs_vehicle_thread.start() acs_time_thread.start() @@ -372,7 +415,7 @@ class MultipleAntColonySystem: while acs_vehicle_thread.is_alive() and acs_time_thread.is_alive(): - # 如果在指定时间内没有搜索到更好的结果,则退出程序 + # Exit the program if no better results are found within the specified time given_time = 10 if time.time() - start_time_found_improved_solution > 60 * given_time: stop_event.set() @@ -384,7 +427,7 @@ class MultipleAntColonySystem: self.print_and_write_in_file(file_to_write, 'best path distance is %f, best vehicle_num is %d' % (self.best_path_distance, self.best_vehicle_num)) self.print_and_write_in_file(file_to_write, '*' * 50) - # 传入None作为结束标志 + # Pass in None as the end flag if self.whether_or_not_to_show_figure: path_queue_for_figure.put(PathMessage(None, None)) @@ -408,10 +451,11 @@ class MultipleAntColonySystem: if vehicle_num < found_path_used_vehicle_num: found_path, found_path_distance, found_path_used_vehicle_num = path, distance, vehicle_num - # 如果找到的路径(which is feasible)的距离更短,则更新当前的最佳path的信息 + # If the distance of the found path (which is feasible) is + # shorter, update the current best path information if found_path_distance < self.best_path_distance: - # 搜索到更好的结果,更新start_time + # Better search results, update start_time start_time_found_improved_solution = time.time() self.print_and_write_in_file(file_to_write, '*' * 50) @@ -425,19 +469,21 @@ class MultipleAntColonySystem: self.best_vehicle_num = found_path_used_vehicle_num self.best_path_distance = found_path_distance - # 如果需要绘制图形,则要找到的best path发送给绘图程序 + # If you need to draw graphics, send the best path to be found to the drawing program if self.whether_or_not_to_show_figure: path_queue_for_figure.put(PathMessage(self.best_path, self.best_path_distance)) - # 通知acs_vehicle和acs_time两个线程,当前找到的best_path和best_path_distance + # Notify the two threads of acs_vehicle and acs_time, the + # currently found best_path and best_path_distance global_path_to_acs_vehicle.put(PathMessage(self.best_path, self.best_path_distance)) global_path_to_acs_time.put(PathMessage(self.best_path, self.best_path_distance)) - # 如果,这两个线程找到的路径用的车辆更少了,就停止这两个线程,开始下一轮迭代 - # 向acs_time和acs_vehicle中发送停止信息 + # If the paths found by the two threads use fewer vehicles, stop + # the two threads and start the next iteration + # Send stop messages to acs_time and acs_vehicle if found_path_used_vehicle_num < best_vehicle_num: - # 搜索到更好的结果,更新start_time + # Better search results, update start_time start_time_found_improved_solution = time.time() self.print_and_write_in_file(file_to_write, '*' * 50) self.print_and_write_in_file(file_to_write, '[macs]: vehicle num of found path (%d) better than best path\'s (%d), found path distance is %f' @@ -454,9 +500,10 @@ class MultipleAntColonySystem: if self.whether_or_not_to_show_figure: path_queue_for_figure.put(PathMessage(self.best_path, self.best_path_distance)) - # 停止acs_time 和 acs_vehicle 两个线程 + # Stop the acs_time and acs_vehicle threads print('[macs]: send stop info to acs_time and acs_vehicle') - # 通知acs_vehicle和acs_time两个线程,当前找到的best_path和best_path_distance + # Notify the two threads of acs_vehicle and acs_time, the + # currently found best_path and best_path_distance stop_event.set() @staticmethod |
