summaryrefslogtreecommitdiffstats
path: root/main.py
blob: 0ee2071d6752ab66f3bff8c6f997ffeace4b4811 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
from vrptw_base import VPRTW_Graph, Ant
import random


class VRPTW_ACO:
    def __init__(self, graph: VPRTW_Graph, ants_num=50, max_iter=300, alpha=1, beta=1, rho=0.1):
        super()
        # 结点的位置、服务时间信息
        self.graph = graph
        # 蚂蚁数量
        self.ants_num = ants_num
        # 最大迭代次数
        self.max_iter = max_iter
        self.alpha = alpha
        self.beta = beta
        # 信息素挥发速度
        self.rho = rho
        # q0 表示直接选择概率最大的下一点的概率
        self.q0 = 0.1
        # Q 表示每辆车的最大载重
        self.max_load = graph.vehicle_capacity
        # L 表示每辆车的最远行驶距离
        self.max_travel_distance = 2000
        # 出车的单位成本
        self.car_cost = 50
        # 行驶的单位成本
        self.travel_cost = 1
        # 早到时间成本
        self.before_ready_time_cost = 1
        # 晚到时间成本
        self.after_due_time_cost = 2
        # 信息素强度
        self.Q = 1
        # 车辆行驶速度
        self.vehicle_speed = 60
        # 创建信息素矩阵
        self.pheromone_mat = np.ones((graph.node_num, graph.node_num))
        self.eta_mat = 1 / graph.node_dist_mat

        # best path
        self.best_path_distance = None
        self.best_path = None

    def run(self):
        """
        运行蚁群优化算法
        :return:
        """
        # 最大迭代次数
        for iter in range(self.max_iter):
            transition_prob = np.zeros((self.graph.node_num, self.graph.node_num))
            # 为每只蚂蚁设置当前车辆负载,当前旅行距离,当前时间
            ants = list(Ant(self.graph.node_num) for _ in range(self.ants_num))
            for k in range(self.ants_num):

                # 蚂蚁需要访问完所有的客户
                while not ants[k].index_to_visit_empty():
                    next_index = self.select_next_index(ants[k], transition_prob)
                    # 判断加入该位置后,是否还满足约束条件, 如果不满足,则再选择一次,然后再进行判断
                    if not self.check_condition(ants[k], next_index):
                        next_index = self.select_next_index(ants[k], transition_prob)
                        if not self.check_condition(ants[k], next_index):
                            next_index = 0

                    # 更新蚂蚁路径
                    ants[k].move_to_next_index(self.graph, self.vehicle_speed, next_index)

                # 最终回到0位置
                ants[k].move_to_next_index(self.graph, self.vehicle_speed, 0)

            # 计算所有蚂蚁的路径长度
            paths_distance = self.calculate_all_path_distance(ants)

            # 记录当前的最佳路径
            best_index = np.argmin(paths_distance)
            if self.best_path is None or paths_distance[best_index] < self.best_path_distance:
                self.best_path = ants[best_index].travel_path
                self.best_path_distance = paths_distance[best_index]
            print('[iteration %d]: best_cost %f' % (iter, self.best_path_distance))
            # 更新信息素表
            self.update_pheromone_mat(ants, paths_distance)

    def select_next_index(self, ant: Ant, transition_prob):
        """
        选择下一个结点
        :param ant:
        :param transition_prob:
        :return:
        """
        current_index = ant.current_index
        index_to_visit = ant.index_to_visit

        transition_prob[ant.current_index][ant.index_to_visit] = np.power(self.pheromone_mat[current_index][index_to_visit], self.alpha) * \
            np.power(self.eta_mat[current_index][index_to_visit], self.beta)
        if np.random.rand() < self.q0:
            max_prob_index = np.argmax(transition_prob[current_index][index_to_visit])
            next_index = index_to_visit[max_prob_index]
        else:
            # 使用轮盘度
            next_index = self.stochastic_accept(index_to_visit, transition_prob[current_index][index_to_visit])
        return next_index

    def check_condition(self, ant: Ant, next_index) -> bool:
        """
        检查移动到下一个点是否满足约束条件
        :param ant:
        :param next_index:
        :return:
        """
        current_index = ant.current_index
        if ant.vehicle_load + self.graph.nodes[next_index].demand > self.max_load:
            return False
        if ant.vehicle_travel_distance + self.graph.node_dist_mat[current_index][next_index] + self.graph.node_dist_mat[next_index][0] > self.max_travel_distance:
            return False
        return True

    def update_pheromone_mat(self, ants, paths_distance):
        """
        更新信息素矩阵
        :return:
        """
        self.pheromone_mat = (1 - self.rho) * self.pheromone_mat
        for k in range(self.ants_num):
            path = ants[k].travel_path
            current_index = path[0]
            for index in path[1:]:
                self.pheromone_mat[current_index][index] += self.Q / paths_distance[k]

    def calculate_all_path_cost(self, ants):
        """
        计算所有蚂蚁行走路径的cost
        :param paths:
        :return:
        """
        # 注意路径是否是从0开始到0结束的
        costs = np.zeros(self.ants_num)
        for k in range(self.ants_num):
            path = ants[k].travel_path
            current_index = path[0]
            for index in path[1:]:
                if index == 0:
                    costs[k] += self.car_cost + self.travel_cost * self.graph.node_dist_mat[current_index][index]
                else:
                    costs[k] += self.travel_cost * self.graph.node_dist_mat[current_index][index]
                    # 这里如何计算是否是早到了,还是迟到了,我还没有记录时间
                    costs[k] += 0
                current_index = index

        return costs

    def calculate_all_path_distance(self, ants: list):
        """
        计算所有蚂蚁的行走路径的长度
        :param paths:
        :return:
        """
        distances = np.zeros(self.ants_num)
        for k in range(self.ants_num):
            path = ants[k].travel_path
            current_index = path[0]
            for index in path[1:]:
                distances[k] += self.graph.node_dist_mat[current_index][index]
                current_index = index
        return distances

    def stochastic_accept(self, index_to_visit, transition_prob):
        """
        轮盘赌
        :param index_to_visit: a list of N index (list or tuple)
        :param transition_prob:
        :return: selected index
        """
        # calculate N and max fitness value
        N = len(index_to_visit)

        # normalize
        max_tran_prob = np.max(transition_prob)
        transition_prob = transition_prob/max_tran_prob

        # select: O(1)
        while True:
            # randomly select an individual with uniform probability
            ind = int(N * random.random())
            if random.random() <= transition_prob[ind]:
                return index_to_visit[ind]


if __name__ == '__main__':
    file_path = './solomon-100/c101.txt'
    graph = VPRTW_Graph(file_path)

    vrptw = VRPTW_ACO(graph, ants_num=50, max_iter=300, alpha=1, beta=1, rho=0.1)
    vrptw.run()