import numpy as np from vrptw_base import VPRTW_Graph, Ant import random class VRPTW_ACO: def __init__(self, graph: VPRTW_Graph, ants_num=50, max_iter=300, alpha=1, beta=1, rho=0.1): super() # 结点的位置、服务时间信息 self.graph = graph # 蚂蚁数量 self.ants_num = ants_num # 最大迭代次数 self.max_iter = max_iter self.alpha = alpha self.beta = beta # 信息素挥发速度 self.rho = rho # q0 表示直接选择概率最大的下一点的概率 self.q0 = 0.1 # Q 表示每辆车的最大载重 self.max_load = graph.vehicle_capacity # L 表示每辆车的最远行驶距离 self.max_travel_distance = 2000 # 出车的单位成本 self.car_cost = 50 # 行驶的单位成本 self.travel_cost = 1 # 早到时间成本 self.before_ready_time_cost = 1 # 晚到时间成本 self.after_due_time_cost = 2 # 信息素强度 self.Q = 1 # 车辆行驶速度 self.vehicle_speed = 60 # 创建信息素矩阵 self.pheromone_mat = np.ones((graph.node_num, graph.node_num)) self.eta_mat = 1 / graph.node_dist_mat # best path self.best_path_distance = None self.best_path = None def run(self): """ 运行蚁群优化算法 :return: """ # 最大迭代次数 for iter in range(self.max_iter): transition_prob = np.zeros((self.graph.node_num, self.graph.node_num)) # 为每只蚂蚁设置当前车辆负载,当前旅行距离,当前时间 ants = list(Ant(self.graph.node_num) for _ in range(self.ants_num)) for k in range(self.ants_num): # 蚂蚁需要访问完所有的客户 while not ants[k].index_to_visit_empty(): next_index = self.select_next_index(ants[k], transition_prob) # 判断加入该位置后,是否还满足约束条件, 如果不满足,则再选择一次,然后再进行判断 if not self.check_condition(ants[k], next_index): next_index = self.select_next_index(ants[k], transition_prob) if not self.check_condition(ants[k], next_index): next_index = 0 # 更新蚂蚁路径 ants[k].move_to_next_index(self.graph, self.vehicle_speed, next_index) # 最终回到0位置 ants[k].move_to_next_index(self.graph, self.vehicle_speed, 0) # 计算所有蚂蚁的路径长度 paths_distance = self.calculate_all_path_distance(ants) # 记录当前的最佳路径 best_index = np.argmin(paths_distance) if self.best_path is None or paths_distance[best_index] < self.best_path_distance: self.best_path = ants[best_index].travel_path self.best_path_distance = paths_distance[best_index] print('[iteration %d]: best_cost %f' % (iter, self.best_path_distance)) # 更新信息素表 self.update_pheromone_mat(ants, paths_distance) def select_next_index(self, ant: Ant, transition_prob): """ 选择下一个结点 :param ant: :param transition_prob: :return: """ current_index = ant.current_index index_to_visit = ant.index_to_visit transition_prob[ant.current_index][ant.index_to_visit] = np.power(self.pheromone_mat[current_index][index_to_visit], self.alpha) * \ np.power(self.eta_mat[current_index][index_to_visit], self.beta) if np.random.rand() < self.q0: max_prob_index = np.argmax(transition_prob[current_index][index_to_visit]) next_index = index_to_visit[max_prob_index] else: # 使用轮盘度 next_index = self.stochastic_accept(index_to_visit, transition_prob[current_index][index_to_visit]) return next_index def check_condition(self, ant: Ant, next_index) -> bool: """ 检查移动到下一个点是否满足约束条件 :param ant: :param next_index: :return: """ current_index = ant.current_index if ant.vehicle_load + self.graph.nodes[next_index].demand > self.max_load: return False if ant.vehicle_travel_distance + self.graph.node_dist_mat[current_index][next_index] + self.graph.node_dist_mat[next_index][0] > self.max_travel_distance: return False return True def update_pheromone_mat(self, ants, paths_distance): """ 更新信息素矩阵 :return: """ self.pheromone_mat = (1 - self.rho) * self.pheromone_mat for k in range(self.ants_num): path = ants[k].travel_path current_index = path[0] for index in path[1:]: self.pheromone_mat[current_index][index] += self.Q / paths_distance[k] def calculate_all_path_cost(self, ants): """ 计算所有蚂蚁行走路径的cost :param paths: :return: """ # 注意路径是否是从0开始到0结束的 costs = np.zeros(self.ants_num) for k in range(self.ants_num): path = ants[k].travel_path current_index = path[0] for index in path[1:]: if index == 0: costs[k] += self.car_cost + self.travel_cost * self.graph.node_dist_mat[current_index][index] else: costs[k] += self.travel_cost * self.graph.node_dist_mat[current_index][index] # 这里如何计算是否是早到了,还是迟到了,我还没有记录时间 costs[k] += 0 current_index = index return costs def calculate_all_path_distance(self, ants: list): """ 计算所有蚂蚁的行走路径的长度 :param paths: :return: """ distances = np.zeros(self.ants_num) for k in range(self.ants_num): path = ants[k].travel_path current_index = path[0] for index in path[1:]: distances[k] += self.graph.node_dist_mat[current_index][index] current_index = index return distances def stochastic_accept(self, index_to_visit, transition_prob): """ 轮盘赌 :param index_to_visit: a list of N index (list or tuple) :param transition_prob: :return: selected index """ # calculate N and max fitness value N = len(index_to_visit) # normalize max_tran_prob = np.max(transition_prob) transition_prob = transition_prob/max_tran_prob # select: O(1) while True: # randomly select an individual with uniform probability ind = int(N * random.random()) if random.random() <= transition_prob[ind]: return index_to_visit[ind] if __name__ == '__main__': file_path = './solomon-100/c101.txt' graph = VPRTW_Graph(file_path) vrptw = VRPTW_ACO(graph, ants_num=50, max_iter=300, alpha=1, beta=1, rho=0.1) vrptw.run()