summaryrefslogtreecommitdiffstats
path: root/vrptw_base.py
blob: 30c20de02baabc99f34a3b1b190b9d931ae70c02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import numpy as np
import copy


class Node:
    def __init__(self, id:  int, x: float, y: float, demand: float, ready_time: float, due_time: float, service_time: float):
        super()
        self.id = id

        if id == 0:
            self.is_depot = True
        else:
            self.is_depot = False

        self.x = x
        self.y = y
        self.demand = demand
        self.ready_time = ready_time
        self.due_time = due_time
        self.service_time = service_time


class VrptwGraph:
    def __init__(self, file_path, rho=0.1):
        super()
        # node_num 结点个数
        # node_dist_mat 节点之间的距离(矩阵)
        # pheromone_mat 节点之间路径上的信息度浓度
        self.node_num, self.nodes, self.node_dist_mat, self.vehicle_num, self.vehicle_capacity \
            = self.create_from_file(file_path)
        # rho 信息素挥发速度
        self.rho = rho
        # 创建信息素矩阵

        self.nnh_travel_path, self.init_pheromone_val, _ = self.nearest_neighbor_heuristic()
        self.init_pheromone_val = 1/(self.init_pheromone_val * self.node_num)

        self.pheromone_mat = np.ones((self.node_num, self.node_num)) * self.init_pheromone_val
        # 启发式信息矩阵
        self.heuristic_info_mat = 1 / self.node_dist_mat

    def copy(self, init_pheromone_val):
        new_graph = copy.deepcopy(self)

        # 信息素
        new_graph.init_pheromone_val = init_pheromone_val
        new_graph.pheromone_mat = np.ones((new_graph.node_num, new_graph.node_num)) * init_pheromone_val

        return new_graph

    def create_from_file(self, file_path):
        # 从文件中读取服务点、客户的位置
        node_list = []
        with open(file_path, 'rt') as f:
            count = 1
            for line in f:
                if count == 5:
                    vehicle_num, vehicle_capacity = line.split()
                    vehicle_num = int(vehicle_num)
                    vehicle_capacity = int(vehicle_capacity)
                elif count >= 10:
                    node_list.append(line.split())
                count += 1
        node_num = len(node_list)
        nodes = list(Node(int(item[0]), float(item[1]), float(item[2]), float(item[3]), float(item[4]), float(item[5]), float(item[6])) for item in node_list)

        # 创建距离矩阵
        node_dist_mat = np.zeros((node_num, node_num))
        for i in range(node_num):
            node_a = nodes[i]
            node_dist_mat[i][i] = 1e-8
            for j in range(i+1, node_num):
                node_b = nodes[j]
                node_dist_mat[i][j] = VrptwGraph.calculate_dist(node_a, node_b)
                node_dist_mat[j][i] = node_dist_mat[i][j]

        return node_num, nodes, node_dist_mat, vehicle_num, vehicle_capacity

    @staticmethod
    def calculate_dist(node_a, node_b):
        return np.linalg.norm((node_a.x - node_b.x, node_a.y - node_b.y))

    def local_update_pheromone(self, start_ind, end_ind):
        self.pheromone_mat[start_ind][end_ind] = (1-self.rho) * self.pheromone_mat[start_ind][end_ind] + \
                                                  self.rho * self.init_pheromone_val

    def global_update_pheromone(self, best_path, best_path_distance):
        """
        更新信息素矩阵
        :return:
        """
        self.pheromone_mat = (1-self.rho) * self.pheromone_mat

        current_ind = best_path[0]
        for next_ind in best_path[1:]:
            self.pheromone_mat[current_ind][next_ind] += self.rho/best_path_distance
            current_ind = next_ind

    def nearest_neighbor_heuristic(self, max_vehicle_num=None):
        index_to_visit = list(range(1, self.node_num))
        current_index = 0
        current_load = 0
        current_time = 0
        travel_distance = 0
        travel_path = [0]

        if max_vehicle_num is None:
            max_vehicle_num = self.node_num

        while len(index_to_visit) > 0 and max_vehicle_num > 0:
            nearest_next_index = self._cal_nearest_next_index(index_to_visit, current_index, current_load, current_time)

            if nearest_next_index is None:
                travel_distance += self.node_dist_mat[current_index][0]

                current_load = 0
                current_time = 0
                travel_path.append(0)
                current_index = 0

                max_vehicle_num -= 1
            else:
                current_load += self.nodes[nearest_next_index].demand

                dist = self.node_dist_mat[current_index][nearest_next_index]
                wait_time = max(self.nodes[nearest_next_index].ready_time - current_time - dist, 0)
                service_time = self.nodes[nearest_next_index].service_time

                current_time += dist + wait_time + service_time
                index_to_visit.remove(nearest_next_index)

                travel_distance += self.node_dist_mat[current_index][nearest_next_index]
                travel_path.append(nearest_next_index)
                current_index = nearest_next_index
        # 最后要回到depot
        travel_distance += self.node_dist_mat[current_index][0]
        travel_path.append(0)

        vehicle_num = travel_path.count(0)-1
        return travel_path, travel_distance, vehicle_num

    def _cal_nearest_next_index(self, index_to_visit, current_index, current_load, current_time):
        """
        找到最近的可达的next_index
        :param index_to_visit:
        :return:
        """
        nearest_ind = None
        nearest_distance = None

        for next_index in index_to_visit:
            if current_load + self.nodes[next_index].demand > self.vehicle_capacity:
                continue

            dist = self.node_dist_mat[current_index][next_index]
            wait_time = max(self.nodes[next_index].ready_time - current_time - dist, 0)
            service_time = self.nodes[next_index].service_time
            # 检查访问某一个旅客之后,能否回到服务店
            if current_time + dist + wait_time + service_time + self.node_dist_mat[next_index][0] > self.nodes[0].due_time:
                continue

            # 不可以服务due time之外的旅客
            if current_time + dist > self.nodes[next_index].due_time:
                continue

            if nearest_distance is None or self.node_dist_mat[current_index][next_index] < nearest_distance:
                nearest_distance = self.node_dist_mat[current_index][next_index]
                nearest_ind = next_index

        return nearest_ind


class PathMessage:
    def __init__(self, path, distance):
        if path is not None:
            self.path = copy.deepcopy(path)
            self.distance = copy.deepcopy(distance)
            self.used_vehicle_num = self.path.count(0) - 1
        else:
            self.path = None
            self.distance = None
            self.used_vehicle_num = None

    def get_path_info(self):
        return self.path, self.distance, self.used_vehicle_num