1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
import numpy as np
from vrptw_base import Graph
class VRPTW_ACO:
def __init__(self, graph: Graph, ants_num=50, max_iter=300, alpha=1, beta=1, rho=0.1):
super()
self.graph = graph
self.ants_num = ants_num
self.max_iter = max_iter
self.alpha = alpha
self.beta = beta
# 信息素挥发速度
self.rho = rho
# q0 表示直接选择概率最大的下一点的概率
self.q0 = 0.1
# Q 表示每辆车的最大载重
self.max_load = 1
# L 表示每辆车的最远行驶距离
self.max_travel_distance = 100
# 出车的单位成本
self.car_cost = 1
# 行驶的单位成本
self.travel_cost = 1
# 早到时间成本
self.early_arrival_cost = 1
# 晚到时间成本
self.late_arrival_cost = 1
# 信息素强度
self.Q = 1
# 创建信息素矩阵
self.pheromone_mat = np.ones((graph.node_num, graph.node_num))
self.eta_mat = 1 / graph.node_dist_mat
def run(self):
# 最大迭代次数
for iter in range(self.max_iter):
probability = np.zeros((self.graph.node_num, self.graph.node_num))
vehicle_load = np.zeros(self.graph.node_num)
travel_distance = np.zeros(self.graph.node_num)
# 遍历所有的蚂蚁
ants_path = list([] for _ in range(self.ants_num))
for k in range(self.ants_num):
index_to_visit = list(range(graph.node_num))
# 每只蚂蚁都从0位置出发,最终要回到0位置
current_index = 0
ants_path[k] = [current_index]
index_to_visit.remove(current_index)
# 蚂蚁需要访问完所有的客户
while len(index_to_visit) > 0:
next_index = self.select_next_index(probability, current_index, index_to_visit)
# 判断加入该位置后,是否还满足约束条件, 如果不满足,则再选择一次,然后再进行判断
if not self.check_condition(current_index, next_index, vehicle_load[k], travel_distance[k]):
next_index = self.select_next_index(probability, current_index, index_to_visit)
if not self.check_condition(current_index, next_index, vehicle_load[k], travel_distance[k]):
next_index = 0
# 更新蚂蚁路径
if next_index == 0:
ants_path[k].append(next_index)
vehicle_load[k] = 0
travel_distance[k] = 0
else:
ants_path[k].append(next_index)
index_to_visit.remove(next_index)
vehicle_load[k] += self.graph.nodes[next_index].demand
travel_distance[k] += self.graph.node_dist_mat[current_index][next_index]
# 最终回到0位置
ants_path[k].append(0)
# 计算所有蚂蚁的路径长度
paths_distance = self.calculate_all_path_distance(ants_path)
# 记录当前的最佳路径
paths_cost = self.calculate_all_path_cost(ants_path)
best_index = np.argmin(paths_cost)
# 更新信息素表
self.update_pheromone_mat(ants_path, paths_distance, )
def select_next_index(self, probability, current_index, index_to_visit):
probability[current_index][index_to_visit] = np.power(self.pheromone_mat[current_index][index_to_visit], self.alpha) * \
np.power(self.eta_mat[current_index][index_to_visit], self.beta)
if np.random.rand() < self.q0:
# 这里的index不能这么写
max_prob_index = np.argmax(probability[current_index][index_to_visit])
next_index = index_to_visit[max_prob_index]
else:
# 使用轮盘度
prob_sum = np.sum(probability[current_index][index_to_visit])
next_index = np.random.choice(index_to_visit, probability[current_index][index_to_visit]/prob_sum)
return next_index
def check_condition(self, current_index, next_index, vehicle_load, travel_distance) -> bool:
"""
检查移动到下一个点是否满足约束条件
:param current_index:
:param next_index:
:param vehicle_load:
:param travel_distance:
:return:
"""
if vehicle_load + self.graph.nodes[next_index].demand > self.max_load:
return False
if travel_distance + self.graph.node_dist_mat[current_index][next_index] + self.graph.node_dist_mat[next_index][0] > self.max_travel_distance:
return False
return True
def update_pheromone_mat(self, paths, paths_distance):
"""
更新信息素矩阵
:return:
"""
self.pheromone_mat = (1 - self.rho) * self.pheromone_mat
for k in range(self.graph.node_num):
current_index = paths[k][0]
for index in paths[k][1:]:
self.pheromone_mat[current_index][index] += self.Q / paths_distance[k]
def calculate_all_path_cost(self, paths):
# 注意路径是否是从0开始到0结束的
costs = np.zeros(self.graph.node_num)
for k in range(self.graph.node_num):
current_index = paths[k][0]
for index in paths[k][1:]:
if index == 0:
costs[k] += self.car_cost + self.travel_cost * self.graph.node_dist_mat[current_index][index]
else:
costs[k] += self.travel_cost * self.graph.node_dist_mat[current_index][index]
# 这里如何计算是否是早到了,还是迟到了,我还没有记录时间
costs[k] += 0
current_index = index
return costs
def calculate_all_path_distance(self, paths):
distances = np.zeros(self.graph.node_num)
for k in range(self.graph.node_num):
current_index = paths[k][0]
for index in paths[k][1:]:
distances[k] += self.graph.node_dist_mat[current_index][index]
current_index = index
return distances
if __name__ == '__main__':
file_path = ''
graph = Graph(file_path)
vrptw = VRPTW_ACO(graph, ants_num=50, max_iter=300, alpha=1, beta=1, rho=0.1)
vrptw.run()
|