summaryrefslogtreecommitdiffstats
path: root/main.py
blob: 90bc3619f98900edc6a449e1856e644ea1d543e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import numpy as np
from vrptw_base import VrptwGraph, Ant, NearestNeighborHeuristic
import random
from vprtw_aco_figure import VrptwAcoFigure


class VrptwAco:
    def __init__(self, graph: VrptwGraph, ants_num=10, max_iter=200, alpha=1, beta=2, rho=0.1):
        super()
        # graph 结点的位置、服务时间信息
        self.graph = graph
        # ants_num 蚂蚁数量
        self.ants_num = ants_num
        # max_iter 最大迭代次数
        self.max_iter = max_iter
        # alpha 信息素信息重要新
        self.alpha = alpha
        # beta 启发性信息重要性
        self.beta = beta
        # rho 信息素挥发速度
        self.rho = rho
        # q0 表示直接选择概率最大的下一点的概率
        self.q0 = 0.1
        # vehicle_capacity 表示每辆车的最大载重
        self.max_load = graph.vehicle_capacity
        # 信息素强度
        self.Q = 1
        # 创建信息素矩阵
        nn_heuristic = NearestNeighborHeuristic(self.graph)
        self.init_pheromone_val = nn_heuristic.cal_init_pheromone_val()
        self.pheromone_mat = np.ones((self.graph.node_num, self.graph.node_num)) * self.init_pheromone_val
        # 启发式信息矩阵
        self.heuristic_info_mat = 1 / graph.node_dist_mat
        # best path
        self.best_path_distance = None
        self.best_path = None

        self.whether_or_not_to_show_figure = False

        if self.whether_or_not_to_show_figure:
            # figure
            self.figure = VrptwAcoFigure(self.graph)

    def run(self):
        """
        运行蚁群优化算法
        :return:
        """
        # 最大迭代次数
        for iter in range(self.max_iter):

            # 为每只蚂蚁设置当前车辆负载,当前旅行距离,当前时间
            ants = list(Ant(self.graph.node_num) for _ in range(self.ants_num))
            for k in range(self.ants_num):

                # 蚂蚁需要访问完所有的客户
                while not ants[k].index_to_visit_empty():
                    next_index = self.select_next_index(ants[k])
                    # 判断加入该位置后,是否还满足约束条件, 如果不满足,则再选择一次,然后再进行判断
                    if not self.check_condition(ants[k], next_index):
                        next_index = self.select_next_index(ants[k])
                        if not self.check_condition(ants[k], next_index):
                            next_index = 0

                    # 更新蚂蚁路径
                    ants[k].move_to_next_index(self.graph, next_index)
                    self.local_update_pheromone(ants[k].current_index, next_index)

                # 最终回到0位置
                ants[k].move_to_next_index(self.graph, 0)
                self.local_update_pheromone(ants[k].current_index, 0)

            # 计算所有蚂蚁的路径长度
            paths_distance = np.array([ant.total_travel_distance for ant in ants])

            # 记录当前的最佳路径
            best_index = np.argmin(paths_distance)
            if self.best_path is None:
                self.best_path = ants[best_index].travel_path
                self.best_path_distance = paths_distance[best_index]
                if self.whether_or_not_to_show_figure:
                    self.figure.init_figure(self.best_path)

            elif paths_distance[best_index] < self.best_path_distance:
                self.best_path = ants[best_index].travel_path
                self.best_path_distance = paths_distance[best_index]
                if self.whether_or_not_to_show_figure:
                    self.figure.update_figure(self.best_path)

            print('[iteration %d]: best distance %f' % (iter, self.best_path_distance))
            # 更新信息素表
            self.global_update_pheromone()

    def select_next_index(self, ant: Ant):
        """
        选择下一个结点
        :param ant:
        :return:
        """
        current_index = ant.current_index
        index_to_visit = ant.index_to_visit

        transition_prob = np.power(self.pheromone_mat[current_index][index_to_visit], self.alpha) * \
            np.power(self.heuristic_info_mat[current_index][index_to_visit], self.beta)

        if np.random.rand() < self.q0:
            max_prob_index = np.argmax(transition_prob)
            next_index = index_to_visit[max_prob_index]
        else:
            # 使用轮盘赌算法
            next_index = self.stochastic_accept(index_to_visit, transition_prob)
        return next_index

    def check_condition(self, ant: Ant, next_index) -> bool:
        """
        检查移动到下一个点是否满足约束条件
        :param ant:
        :param next_index:
        :return:
        """
        current_index = ant.current_index
        if ant.vehicle_load + self.graph.nodes[next_index].demand > self.max_load:
            return False

        # 检查访问某一个旅客之后,能否回到服务店
        if ant.vehicle_travel_time + self.graph.node_dist_mat[current_index][next_index] + self.graph.node_dist_mat[next_index][0] > self.graph.nodes[0].due_time:
            return False

        # 不可以服务due time之外的旅客
        if ant.vehicle_travel_time + self.graph.node_dist_mat[current_index][next_index] > self.graph.nodes[next_index].due_time:
            return False

        return True

    def local_update_pheromone(self, start_ind, end_ind):
        self.pheromone_mat[start_ind][end_ind] = (1-self.rho) * self.pheromone_mat[start_ind][end_ind] + \
                                                 self.rho * self.init_pheromone_val

    def global_update_pheromone(self):
        """
        更新信息素矩阵
        :return:
        """
        self.pheromone_mat = (1-self.rho) * self.pheromone_mat

        current_ind = self.best_path[0]
        for next_ind in self.best_path[1:]:
            self.pheromone_mat[current_ind][next_ind] += self.Q/self.best_path_distance
            current_ind = next_ind

    def stochastic_accept(self, index_to_visit, transition_prob):
        """
        轮盘赌
        :param index_to_visit: a list of N index (list or tuple)
        :param transition_prob:
        :return: selected index
        """
        # calculate N and max fitness value
        N = len(index_to_visit)

        # normalize
        sum_tran_prob = np.sum(transition_prob)
        norm_transition_prob = transition_prob/sum_tran_prob

        # select: O(1)
        while True:
            # randomly select an individual with uniform probability
            ind = int(N * random.random())
            if random.random() <= norm_transition_prob[ind]:
                return index_to_visit[ind]


if __name__ == '__main__':
    file_path = './solomon-100/r101.txt'
    graph = VrptwGraph(file_path)

    vrptw = VrptwAco(graph)
    vrptw.run()