1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
from vrptw_base import VrptwGraph
from multiple_ant_colony_system import MultipleAntColonySystem
import numpy as np
import csv
import math
import random
import networkx as nx
import matplotlib.pyplot as plt
class Node:
"""
Attributes
----------
index : int
index
ubigeo : str
6 digits
lat : float
Latitud (angulo de los Paralelos) en grados sexagesimales
lon : float
Longitud (angulo de los Meridianos) en grados sexagesimales
is_depot : bool
demand : int
ready_time : float
due_time : float
service_time : float
x : float
Aproximacion local, en Km respecto
y : float
Aproximacion local, en Km respecto ("Lima")
Notes
-----
Web Mercator projection (BAD):
x = floor(256 / (2 * math.pi) * 2**(zoom_level) * (lon + math.pi))
y = floor(265 / (2 * math.pi) * 2**(zoom_level) * (math.pi - math.ln(math.tan( math.pi / 4 + lat / 2 ))))
x = R * lon
y = R * ln(tan(pi/4 + lat/2)
Both `lon` and `lat` in radians.
"Lima": -12.04591952,-77.03049615 (lat, long)
"""
def __init__(self, index: int, ubigeo, lat, lon, is_depot,
demand, ready_time, due_time, service_time):
super()
self.index = index
self.ubigeo = ubigeo
if is_depot:
self.is_depot = True
else:
self.is_depot = False
earth_radius_km = 6371 # Avg. radius
lima_lat = -12.04591952
lima_lon = -77.03049615
self.lat = lat
self.lon = lon
self.x = (lon - lima_lon) * (math.pi / 180) * earth_radius_km
self.y = (lat - lima_lat) * (math.pi / 180) * earth_radius_km
self.x = round(self.x, 3)
self.y = round(self.y, 3)
self.demand = demand
self.ready_time = 0 # ready_time
self.due_time = due_time
self.service_time = service_time
def _deg2rad(degrees):
return degrees * math.pi / 180
def distance_between_coordinates(lat1, lon1, lat2, lon2):
"""Returns the distance in km"""
earth_radius_km = 6371 # Avg. radius
lat1 = _deg2rad(lat1)
lat2 = _deg2rad(lat2)
d_lat = lat2 - lat1
d_lon = lon2 - lon1
a = math.sin(d_lat/2) * math.sin(d_lat/2) \
+ math.sin(d_lon/2) * math.sin(d_lon/2) * math.cos(lat1) * math.cos(lat2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
return earth_radius_km * c
def _read_nodes(depot_num):
"""
Read nodes from input file.
Attributes
----------
depot_num : int
Number of depots
Returns
-------
list
List of Nodes. The first `depot_num` nodes are the depots.
"""
depots = []
no_depots = []
with open('odiparpack/inf226.oficinas_mod.csv', newline='') as csvfile:
orders = csv.reader(csvfile)
count = 1
index_customer = depot_num
index_depot = 0
for row in orders:
if count == 1:
count += 1
continue
ubigeo, dept, prov, lat, lon, region_natural, is_depot = row[:7]
demand, ready_time, due_time, service_time = row[7:]
n = Node(
-1, ubigeo, float(lat), float(lon),
int(is_depot),
demand=float(demand), ready_time=0,
due_time=float(due_time), service_time=60
)
if n.is_depot:
n.index = index_depot
depots.append(n)
index_depot += 1
else:
n.index = index_customer
no_depots.append(n)
index_customer += 1
count += 1
return depots + no_depots
def _read_tramos():
"""
Lee archivo de tramos
Returns
-------
list
Lista de tuplas con los tramos (ubigeo1, ubigeo2)
"""
tramos = []
with open('odiparpack/inf226.tramos.v.2.0.csv', newline='') as f:
rows = csv.reader(f)
count = 1
for row in rows:
if count >= 2:
tramos.append([row[0], row[1]])
count += 1
return tramos
def make_complete_customer_node_graph(nodes, tramos):
"""
Nodes + Tramos make a network. An undirected graph. But we only care
about the nodes that are either have demand (aka. customers), or are depots.
This function creates a sub-graph of only depot-or-customer nodes, and
finds the nearest path + path_lenght between them (on the original network).
Parameters
----------
nodes : list
List of Node objects
tramos : list
List of tuples of "ubigeo"
Returns
-------
list
List of depot-or-customer nodes,
Shortest distance matrix (np.narray),
Dict with shortest distance and path object for all pairs of nodes
"""
elist = []
# Load sparse graph
nodes_d = {n.ubigeo: n for n in nodes}
for ubigeo1, ubigeo2 in tramos:
n1 = nodes_d[ubigeo1]
n2 = nodes_d[ubigeo2]
dist = round(distance_between_coordinates(n1.lat, n1.lon,
n2.lat, n2.lon), 0)
elist.append((ubigeo1, ubigeo2, dist))
G = nx.Graph()
G.add_weighted_edges_from(elist)
# Calculate missing edges using the shortest path
# (Thus making the graph complete)
len_path = dict(nx.all_pairs_dijkstra(G, weight='weight'))
# for node, (dist, path) in len_path:
# print(f"{node}: {dist} [{path}]")
# Prune all nodes that have no demand and "reset index" of nodes
depot_customer_nodes = []
i = 0
for n in nodes:
if n.demand > 0 or n.is_depot:
n.index = i
depot_customer_nodes.append(n)
i += 1
node_num = i
# Create distance matrix
node_dist_mat = np.zeros((node_num, node_num))
for n1 in depot_customer_nodes:
for n2 in depot_customer_nodes:
node_dist_mat[n1.index, n2.index] = \
len_path[n1.ubigeo][0][n2.ubigeo]
return depot_customer_nodes, node_dist_mat, len_path
def lab():
depot_num = 3
nodes = _read_nodes(depot_num)
tramos = _read_tramos()
nodes, node_dist_mat, len_path = \
make_complete_customer_node_graph(nodes, tramos)
# nodes with demand
for n in nodes[:8]:
print(n.__dict__)
# shortest distance between nodes in network
print(node_dist_mat[:8, :8])
# shortest path
for n1 in nodes[:1]:
for n2 in nodes[:8]:
shortest_path = len_path[n1.ubigeo][1][n2.ubigeo]
print(f"{n1.ubigeo} => {n2.ubigeo}: [{shortest_path}]")
def main():
#file_path = './solomon-100/c101.txt'
file_path = './odiparpack/pedidosperu195.txt'
ants_num = 10
beta = 2 # 5
q0 = 0.1 # 0.5 ?
show_figure = True
graph = VrptwGraph(file_path)
macs = MultipleAntColonySystem(graph, ants_num=ants_num, beta=beta, q0=q0,
whether_or_not_to_show_figure=show_figure)
macs.run_multiple_ant_colony_system()
if __name__ == '__main__':
lab()
|