1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
import numpy as np
import copy
import random
from vrptw_base import VrptwGraph
class Ant:
def __init__(self, graph: VrptwGraph, start_index=0):
super()
self.graph = graph
self.current_index = start_index
self.vehicle_load = 0
self.vehicle_travel_time = 0
self.travel_path = [start_index]
self.arrival_time = [0]
self.index_to_visit = list(range(graph.node_num))
self.index_to_visit.remove(start_index)
self.total_travel_distance = 0
def move_to_next_index(self, next_index):
# 更新蚂蚁路径
self.travel_path.append(next_index)
self.total_travel_distance += self.graph.node_dist_mat[self.current_index][next_index]
dist = self.graph.node_dist_mat[self.current_index][next_index]
self.arrival_time.append(self.vehicle_travel_time + dist)
if self.graph.nodes[next_index].is_depot:
# 如果一下个位置为服务器点,则要将车辆负载等清空
self.vehicle_load = 0
self.vehicle_travel_time = 0
else:
# 更新车辆负载、行驶距离、时间
self.vehicle_load += self.graph.nodes[next_index].demand
# 如果早于客户要求的时间窗(ready_time),则需要等待
self.vehicle_travel_time += dist + max(self.graph.nodes[next_index].ready_time - self.vehicle_travel_time - dist, 0) + self.graph.nodes[next_index].service_time
self.index_to_visit.remove(next_index)
self.current_index = next_index
def index_to_visit_empty(self):
return len(self.index_to_visit) == 0
def get_active_vehicles_num(self):
return self.travel_path.count(0)-1
def check_condition(self, next_index) -> bool:
"""
检查移动到下一个点是否满足约束条件
:param next_index:
:return:
"""
if self.vehicle_load + self.graph.nodes[next_index].demand > self.graph.vehicle_capacity:
return False
dist = self.graph.node_dist_mat[self.current_index][next_index]
wait_time = max(self.graph.nodes[next_index].ready_time - self.vehicle_travel_time - dist, 0)
service_time = self.graph.nodes[next_index].service_time
# 检查访问某一个旅客之后,能否回到服务店
if self.vehicle_travel_time + dist + wait_time + service_time + self.graph.node_dist_mat[next_index][0] > self.graph.nodes[0].due_time:
return False
# 不可以服务due time之外的旅客
if self.vehicle_travel_time + dist > self.graph.nodes[next_index].due_time:
return False
return True
def cal_next_index_meet_constrains(self):
"""
找出所有从当前位置(ant.current_index)可达的customer
:return:
"""
next_index_meet_constrains = []
for next_ind in self.index_to_visit:
if self.check_condition(next_ind):
next_index_meet_constrains.append(next_ind)
return next_index_meet_constrains
def cal_nearest_next_index(self, next_index_list):
"""
从待选的customers中选择,离当前位置(ant.current_index)最近的customer
:param next_index_list:
:return:
"""
current_ind = self.current_index
nearest_ind = next_index_list[0]
min_dist = self.graph.node_dist_mat[current_ind][next_index_list[0]]
for next_ind in next_index_list[1:]:
dist = self.graph.node_dist_mat[current_ind][next_ind]
if dist < min_dist:
min_dist = dist
nearest_ind = next_ind
return nearest_ind
def cal_total_travel_distance(self, travel_path):
distance = 0
current_ind = travel_path[0]
for next_ind in travel_path[1:]:
distance += self.graph.node_dist_mat[current_ind][next_ind]
current_ind = next_ind
return distance
def try_insert_on_path(self, node_id, what_to_do_list: list):
"""
尝试性地将node_id插入当前的travel_path中
插入的位置不能违反载重,时间,行驶距离的限制
如果有多个位置,则找出最优的位置
:param node_id:
:return:
"""
feasible_insert_index = []
feasible_distance = []
path = copy.deepcopy(self.travel_path)
for insert_index in range(len(path)):
if len(what_to_do_list) > 0:
info = what_to_do_list[0]
if info.is_to_stop():
return
if self.graph.nodes[path[insert_index]].is_depot:
continue
front_depot_index = insert_index
while front_depot_index >= 0 and not self.graph.nodes[self.travel_path[front_depot_index]].is_depot:
front_depot_index -= 1
front_depot_index = max(front_depot_index, 0)
check_ant = Ant(self.graph, path[0])
# 让check_ant 走过 path中下标从front_depot_index开始到insert_index-1的点
for i in range(front_depot_index, insert_index):
check_ant.move_to_next_index(path[i])
# 开始尝试性地对排序后的index_to_visit中的结点进行访问
if check_ant.check_condition(node_id):
check_ant.move_to_next_index(node_id)
# 如果可以到node_id,则要保证vehicle可以行驶回到depot
for next_ind in path[insert_index:]:
if len(what_to_do_list) > 0:
info = what_to_do_list[0]
if info.is_to_stop():
return
if check_ant.check_condition(next_ind):
check_ant.move_to_next_index(next_ind)
if self.graph.nodes[next_ind].is_depot:
feasible_insert_index.append(insert_index)
path.insert(insert_index, node_id)
feasible_distance.append(self.cal_total_travel_distance(path))
# 如果不可以回到depot,则返回上一层
else:
break
if len(feasible_distance) == 0:
return None
else:
feasible_distance = np.array(feasible_distance)
min_insert_ind = np.argmin(feasible_distance)
best_ind = feasible_insert_index[int(min_insert_ind)]
return best_ind
def get_path_without_duplicated_depot(self):
path = copy.deepcopy(self.travel_path)
for i in range(len(path)):
if self.graph.nodes[i].is_depot:
path[i] = 0
return path
def insertion_procedure(self, what_to_do_list: list):
"""
为每个未访问的结点尝试性地找到一个合适的位置,插入到当前的travel_path
插入的位置不能违反载重,时间,行驶距离的限制
:return:
"""
if self.index_to_visit_empty():
return
ind_to_visit = copy.deepcopy(self.index_to_visit)
demand = np.zeros(len(ind_to_visit))
for i in range(len(ind_to_visit)):
demand[i] = self.graph.nodes[i].demand
sorted_ind = np.argsort(demand)
ind_to_visit = ind_to_visit[sorted_ind]
for node_id in ind_to_visit:
if len(what_to_do_list) > 0:
info = what_to_do_list[0]
if info.is_to_stop():
return
best_insert_index = self.try_insert_on_path(node_id, what_to_do_list)
if best_insert_index is not None:
self.travel_path.insert(best_insert_index, node_id)
self.index_to_visit.remove(node_id)
self.total_travel_distance = self.cal_total_travel_distance(self.travel_path)
def local_search_procedure(self, what_to_do_list):
"""
对当前的已经访问完graph中所有节点的travel_path使用cross进行局部搜索
:return:
"""
# 找出path中所有的depot的位置
depot_ind = []
for ind in range(len(self.travel_path)):
if self.graph.nodes[self.travel_path[ind]].is_depot:
depot_ind.append(ind)
new_path_travel_distance = []
new_path = []
# 将self.travel_path分成多段,每段以depot开始,以depot结束,称为route
for i in range(1, len(depot_ind)):
for j in range(i+1, len(depot_ind)):
if len(what_to_do_list) > 0:
info = what_to_do_list[0]
if info.is_to_stop():
return
# 随机在两段route,各随机选择一段customer id,交换这两段customer id
start_a = random.randint(depot_ind[i-1]+1, depot_ind[i]-1)
end_a = random.randint(depot_ind[i-1]+1, depot_ind[i]-1)
if end_a < start_a:
start_a, end_a = end_a, start_a
start_b = random.randint(depot_ind[j-1]+1, depot_ind[j]-1)
end_b = random.randint(depot_ind[j - 1] + 1, depot_ind[j] - 1)
if end_b < start_b:
start_b, end_b = end_b, start_b
path = []
path.extend(self.travel_path[:start_a])
path.extend(self.travel_path[start_b:end_b+1])
path.extend(self.travel_path[end_a:start_b])
path.extend(self.travel_path[start_a:end_a+1])
path.extend(self.travel_path[end_b+1:])
if len(path) != self.travel_path:
raise RuntimeError('error')
# 判断新生成的path是否是可行的
check_ant = Ant(self.graph, path[0])
for ind in path[1:]:
if check_ant.check_condition(ind):
check_ant.move_to_next_index(ind)
else:
break
# 如果新生成的path是可行的
if check_ant.index_to_visit_empty():
# print('success to search')
new_path_travel_distance.append(check_ant.total_travel_distance)
new_path.append(path)
# 找出新生成的path中,路程最小的
new_path_travel_distance = np.array(new_path_travel_distance)
min_distance_ind = np.argmin(new_path_travel_distance)
min_distance = new_path_travel_distance[min_distance_ind]
if min_distance < self.total_travel_distance:
self.travel_path = new_path[int(min_distance_ind)]
self.index_to_visit.clear()
|