import numpy as np import random from vprtw_aco_figure import VrptwAcoFigure from vrptw_base import VrptwGraph, PathMessage from ant import Ant from threading import Thread, Event from queue import Queue from concurrent.futures import ThreadPoolExecutor import copy import time from multiprocessing import Process from multiprocessing import Queue as MPQueue class MultipleAntColonySystem: def __init__(self, graph: VrptwGraph, ants_num=10, beta=1, q0=0.1, whether_or_not_to_show_figure=True): super() # graph 结点的位置、服务时间信息 self.graph = graph # ants_num 蚂蚁数量 self.ants_num = ants_num # vehicle_capacity 表示每辆车的最大载重 self.max_load = graph.vehicle_capacity # beta 启发性信息重要性 self.beta = beta # q0 表示直接选择概率最大的下一点的概率 self.q0 = q0 # best path self.best_path_distance = None self.best_path = None self.best_vehicle_num = None self.whether_or_not_to_show_figure = whether_or_not_to_show_figure @staticmethod def stochastic_accept(index_to_visit, transition_prob): """ 轮盘赌 :param index_to_visit: a list of N index (list or tuple) :param transition_prob: :return: selected index """ # calculate N and max fitness value N = len(index_to_visit) # normalize sum_tran_prob = np.sum(transition_prob) norm_transition_prob = transition_prob/sum_tran_prob # select: O(1) while True: # randomly select an individual with uniform probability ind = int(N * random.random()) if random.random() <= norm_transition_prob[ind]: return index_to_visit[ind] @staticmethod def new_active_ant(ant: Ant, vehicle_num: int, local_search: bool, IN: np.numarray, q0: float, beta: int, stop_event: Event): """ 按照指定的vehicle_num在地图上进行探索,所使用的vehicle num不能多于指定的数量,acs_time和acs_vehicle都会使用到这个方法 对于acs_time来说,需要访问完所有的结点(路径是可行的),尽量找到travel distance更短的路径 对于acs_vehicle来说,所使用的vehicle num会比当前所找到的best path所使用的车辆数少一辆,要使用更少的车辆,尽量去访问结点,如果访问完了所有的结点(路径是可行的),就将通知macs :param ant: :param vehicle_num: :param local_search: :param IN: :param q0: :param beta: :param stop_event: :return: """ # print('[new_active_ant]: start, start_index %d' % ant.travel_path[0]) # 在new_active_ant中,最多可以使用vehicle_num个车,即最多可以包含vehicle_num+1个depot结点,由于出发结点用掉了一个,所以只剩下vehicle个depot unused_depot_count = vehicle_num # 如果还有未访问的结点,并且还可以回到depot中 while not ant.index_to_visit_empty() and unused_depot_count > 0: if stop_event.is_set(): # print('[new_active_ant]: receive stop event') return # 计算所有满足载重等限制的下一个结点 next_index_meet_constrains = ant.cal_next_index_meet_constrains() # 如果没有满足限制的下一个结点,则回到depot中 if len(next_index_meet_constrains) == 0: ant.move_to_next_index(0) unused_depot_count -= 1 continue # 开始计算满足限制的下一个结点,选择各个结点的概率 length = len(next_index_meet_constrains) ready_time = np.zeros(length) due_time = np.zeros(length) for i in range(length): ready_time[i] = ant.graph.nodes[next_index_meet_constrains[i]].ready_time due_time[i] = ant.graph.nodes[next_index_meet_constrains[i]].due_time delivery_time = np.maximum(ant.vehicle_travel_time + ant.graph.node_dist_mat[ant.current_index][next_index_meet_constrains], ready_time) delta_time = delivery_time - ant.vehicle_travel_time distance = delta_time * (due_time - ant.vehicle_travel_time) distance = np.maximum(1.0, distance-IN[next_index_meet_constrains]) closeness = 1/distance transition_prob = ant.graph.pheromone_mat[ant.current_index][next_index_meet_constrains] * \ np.power(closeness, beta) transition_prob = transition_prob / np.sum(transition_prob) # 按照概率直接选择closeness最大的结点 if np.random.rand() < q0: max_prob_index = np.argmax(transition_prob) next_index = next_index_meet_constrains[max_prob_index] else: # 使用轮盘赌算法 next_index = MultipleAntColonySystem.stochastic_accept(next_index_meet_constrains, transition_prob) # 更新信息素矩阵 ant.graph.local_update_pheromone(ant.current_index, next_index) ant.move_to_next_index(next_index) # 如果走完所有的点了,需要回到depot if ant.index_to_visit_empty(): ant.move_to_next_index(0) # 对未访问的点进行插入,保证path是可行的 ant.insertion_procedure(stop_event) # ant.index_to_visit_empty()==True就是feasible的意思 if local_search is True and ant.index_to_visit_empty(): ant.local_search_procedure(stop_event) @staticmethod def acs_time(new_graph: VrptwGraph, vehicle_num: int, ants_num: int, q0: float, beta: int, global_path_queue: Queue, path_found_queue: Queue, stop_event: Event): """ 对于acs_time来说,需要访问完所有的结点(路径是可行的),尽量找到travel distance更短的路径 :param new_graph: :param vehicle_num: :param ants_num: :param q0: :param beta: :param global_path_queue: :param path_found_queue: :param stop_event: :return: """ # 最多可以使用vehicle_num辆车,即在path中最多包含vehicle_num+1个depot中,找到路程最短的路径, # vehicle_num设置为与当前的best_path一致 print('[acs_time]: start, vehicle_num %d' % vehicle_num) # 初始化信息素矩阵 global_best_path = None global_best_distance = None ants_pool = ThreadPoolExecutor(ants_num) ants_thread = [] ants = [] while True: print('[acs_time]: new iteration') if stop_event.is_set(): print('[acs_time]: receive stop event') return for k in range(ants_num): ant = Ant(new_graph, 0) thread = ants_pool.submit(MultipleAntColonySystem.new_active_ant, ant, vehicle_num, True, np.zeros(new_graph.node_num), q0, beta, stop_event) ants_thread.append(thread) ants.append(ant) # 这里可以使用result方法,等待线程跑完 for thread in ants_thread: thread.result() ant_best_travel_distance = None ant_best_path = None # 判断蚂蚁找出来的路径是否是feasible的,并且比全局的路径要好 for ant in ants: if stop_event.is_set(): print('[acs_time]: receive stop event') return # 获取当前的best path if not global_path_queue.empty(): info = global_path_queue.get() while not global_path_queue.empty(): info = global_path_queue.get() print('[acs_time]: receive global path info') global_best_path, global_best_distance, global_used_vehicle_num = info.get_path_info() # 路径蚂蚁计算得到的最短路径 if ant.index_to_visit_empty() and (ant_best_travel_distance is None or ant.total_travel_distance < ant_best_travel_distance): ant_best_travel_distance = ant.total_travel_distance ant_best_path = ant.travel_path # 在这里执行信息素的全局更新 new_graph.global_update_pheromone(global_best_path, global_best_distance) # 向macs发送计算得到的当前的最佳路径 if ant_best_travel_distance is not None and ant_best_travel_distance < global_best_distance: print('[acs_time]: local search for global_path found a improved feasible path, send path info to macs') path_found_queue.put(PathMessage(ant_best_path, ant_best_travel_distance)) ants_thread.clear() for ant in ants: ant.clear() del ant ants.clear() @staticmethod def acs_vehicle(new_graph: VrptwGraph, vehicle_num: int, ants_num: int, q0: float, beta: int, global_path_queue: Queue, path_found_queue: Queue, stop_event: Event): """ 对于acs_vehicle来说,所使用的vehicle num会比当前所找到的best path所使用的车辆数少一辆,要使用更少的车辆,尽量去访问结点,如果访问完了所有的结点(路径是可行的),就将通知macs :param new_graph: :param vehicle_num: :param ants_num: :param q0: :param beta: :param global_path_queue: :param path_found_queue: :param stop_event: :return: """ # vehicle_num设置为比当前的best_path少一个 print('[acs_vehicle]: start, vehicle_num %d' % vehicle_num) global_best_path = None global_best_distance = None # 使用nearest_neighbor_heuristic算法初始化path 和distance current_path, current_path_distance, _ = new_graph.nearest_neighbor_heuristic() # 找出当前path中未访问的结点 current_index_to_visit = list(range(new_graph.node_num)) for ind in set(current_path): current_index_to_visit.remove(ind) ants_pool = ThreadPoolExecutor(ants_num) ants_thread = [] ants = [] IN = np.zeros(new_graph.node_num) while True: print('[acs_vehicle]: new iteration') if stop_event.is_set(): print('[acs_vehicle]: receive stop event') return for k in range(ants_num): ant = Ant(new_graph, 0) thread = ants_pool.submit(MultipleAntColonySystem.new_active_ant, ant, vehicle_num, False, IN, q0, beta, stop_event) ants_thread.append(thread) ants.append(ant) # 这里可以使用result方法,等待线程跑完 for thread in ants_thread: thread.result() for ant in ants: if stop_event.is_set(): print('[acs_vehicle]: receive stop event') return IN[ant.index_to_visit] = IN[ant.index_to_visit]+1 # 蚂蚁找出来的路径与current_path进行比较,是否能使用vehicle_num辆车访问到更多的结点 if len(ant.index_to_visit) < len(current_index_to_visit): current_path = copy.deepcopy(ant.travel_path) current_index_to_visit = copy.deepcopy(ant.index_to_visit) current_path_distance = ant.total_travel_distance # 并且将IN设置为0 IN = np.zeros(new_graph.node_num) # 如果这一条路径是feasible的话,就要发到macs_vrptw中 if ant.index_to_visit_empty(): print('[acs_vehicle]: found a feasible path, send path info to macs') path_found_queue.put(PathMessage(ant.travel_path, ant.total_travel_distance)) # 更新new_graph中的信息素,global new_graph.global_update_pheromone(current_path, current_path_distance) if not global_path_queue.empty(): info = global_path_queue.get() while not global_path_queue.empty(): info = global_path_queue.get() print('[acs_vehicle]: receive global path info') global_best_path, global_best_distance, global_used_vehicle_num = info.get_path_info() new_graph.global_update_pheromone(global_best_path, global_best_distance) ants_thread.clear() for ant in ants: ant.clear() del ant ants.clear() def run_multiple_ant_colony_system(self): """ 开启另外的线程来跑multiple_ant_colony_system, 使用主线程来绘图 :return: """ path_queue_for_figure = MPQueue() multiple_ant_colony_system_thread = Process(target=self._multiple_ant_colony_system, args=(path_queue_for_figure,)) multiple_ant_colony_system_thread.start() # 是否要展示figure if self.whether_or_not_to_show_figure: figure = VrptwAcoFigure(self.graph.nodes, path_queue_for_figure) figure.run() multiple_ant_colony_system_thread.join() # 传入None作为结束标志 if self.whether_or_not_to_show_figure: path_queue_for_figure.put(PathMessage(None, None)) def _multiple_ant_colony_system(self, path_queue_for_figure: MPQueue): """ 调用acs_time 和 acs_vehicle进行路径的探索 :param path_queue_for_figure: :return: """ start_time_total = time.time() # 在这里需要两个队列,time_what_to_do、vehicle_what_to_do, 用来告诉acs_time、acs_vehicle这两个线程,当前的best path是什么,或者让他们停止计算 global_path_to_acs_time = Queue() global_path_to_acs_vehicle = Queue() # 另外的一个队列, path_found_queue就是接收acs_time 和acs_vehicle计算出来的比best path还要好的feasible path path_found_queue = Queue() # 使用近邻点算法初始化 self.best_path, self.best_path_distance, self.best_vehicle_num = self.graph.nearest_neighbor_heuristic() path_queue_for_figure.put(PathMessage(self.best_path, self.best_path_distance)) while True: print('[multiple_ant_colony_system]: new iteration') start_time_found_improved_solution = time.time() # 当前best path的信息,放在queue中以通知acs_time和acs_vehicle当前的best_path是什么 global_path_to_acs_vehicle.put(PathMessage(self.best_path, self.best_path_distance)) global_path_to_acs_time.put(PathMessage(self.best_path, self.best_path_distance)) stop_event = Event() # acs_vehicle,尝试以self.best_vehicle_num-1辆车去探索,访问更多的结点 graph_for_acs_vehicle = self.graph.copy(self.graph.init_pheromone_val) acs_vehicle_thread = Thread(target=MultipleAntColonySystem.acs_vehicle, args=(graph_for_acs_vehicle, self.best_vehicle_num-1, self.ants_num, self.q0, self.beta, global_path_to_acs_vehicle, path_found_queue, stop_event)) # acs_time 尝试以self.best_vehicle_num辆车去探索,找到更短的路径 graph_for_acs_time = self.graph.copy(self.graph.init_pheromone_val) acs_time_thread = Thread(target=MultipleAntColonySystem.acs_time, args=(graph_for_acs_time, self.best_vehicle_num, self.ants_num, self.q0, self.beta, global_path_to_acs_time, path_found_queue, stop_event)) # 启动acs_vehicle_thread和acs_time_thread,当他们找到feasible、且是比best path好的路径时,就会发送到macs中来 print('[macs]: start acs_vehicle and acs_time') acs_vehicle_thread.start() acs_time_thread.start() best_vehicle_num = self.best_vehicle_num while acs_vehicle_thread.is_alive() and acs_time_thread.is_alive(): # 如果在指定时间内没有搜索到更好的结果,则退出程序 if time.time() - start_time_found_improved_solution > 60 * 5: stop_event.set() print('*' * 50) print('time is up: cannot find a better solution in given time') print('it takes %0.3f second from multiple_ant_colony_system running' % (time.time()-start_time_total)) print('*' * 50) return if path_found_queue.empty(): continue path_info = path_found_queue.get() print('[macs]: receive found path info') found_path, found_path_distance, found_path_used_vehicle_num = path_info.get_path_info() while not path_found_queue.empty(): path, distance, vehicle_num = path_found_queue.get().get_path_info() if distance < found_path_distance: found_path, found_path_distance, found_path_used_vehicle_num = path, distance, vehicle_num if vehicle_num < found_path_used_vehicle_num: found_path, found_path_distance, found_path_used_vehicle_num = path, distance, vehicle_num # 如果找到的路径(which is feasible)的距离更短,则更新当前的最佳path的信息 if found_path_distance < self.best_path_distance: # 搜索到更好的结果,更新start_time start_time_found_improved_solution = time.time() print('*' * 50) print('[macs]: distance of found path (%f) better than best path\'s (%f)' % (found_path_distance, self.best_path_distance)) print('it takes %0.3f second from multiple_ant_colony_system running' % (time.time()-start_time_total)) print('*' * 50) self.best_path = found_path self.best_vehicle_num = found_path_used_vehicle_num self.best_path_distance = found_path_distance # 如果需要绘制图形,则要找到的best path发送给绘图程序 if self.whether_or_not_to_show_figure: path_queue_for_figure.put(PathMessage(self.best_path, self.best_path_distance)) # 通知acs_vehicle和acs_time两个线程,当前找到的best_path和best_path_distance global_path_to_acs_vehicle.put(PathMessage(self.best_path, self.best_path_distance)) global_path_to_acs_time.put(PathMessage(self.best_path, self.best_path_distance)) # 如果,这两个线程找到的路径用的车辆更少了,就停止这两个线程,开始下一轮迭代 # 向acs_time和acs_vehicle中发送停止信息 if found_path_used_vehicle_num < best_vehicle_num: # 搜索到更好的结果,更新start_time start_time_found_improved_solution = time.time() print('*' * 50) print('[macs]: vehicle num of found path (%d) better than best path\'s (%d), found path distance is %f' % (found_path_used_vehicle_num, best_vehicle_num, found_path_distance)) print('it takes %0.3f second multiple_ant_colony_system running' % (time.time() - start_time_total)) print('*' * 50) self.best_path = found_path self.best_vehicle_num = found_path_used_vehicle_num self.best_path_distance = found_path_distance if self.whether_or_not_to_show_figure: path_queue_for_figure.put(PathMessage(self.best_path, self.best_path_distance)) # 停止acs_time 和 acs_vehicle 两个线程 print('[macs]: send stop info to acs_time and acs_vehicle') # 通知acs_vehicle和acs_time两个线程,当前找到的best_path和best_path_distance stop_event.set()