import numpy as np from vrptw_base import VrptwGraph, Ant, NearestNeighborHeuristic import random from vprtw_aco_figure import VrptwAcoFigure class VrptwAco: def __init__(self, graph: VrptwGraph, ants_num=10, max_iter=200, alpha=1, beta=2, rho=0.1): super() # graph 结点的位置、服务时间信息 self.graph = graph # ants_num 蚂蚁数量 self.ants_num = ants_num # max_iter 最大迭代次数 self.max_iter = max_iter # alpha 信息素信息重要新 self.alpha = alpha # beta 启发性信息重要性 self.beta = beta # rho 信息素挥发速度 self.rho = rho # q0 表示直接选择概率最大的下一点的概率 self.q0 = 0.1 # vehicle_capacity 表示每辆车的最大载重 self.max_load = graph.vehicle_capacity # 信息素强度 self.Q = 1 # 创建信息素矩阵 nn_heuristic = NearestNeighborHeuristic(self.graph) self.init_pheromone_val = nn_heuristic.cal_init_pheromone_val() self.pheromone_mat = np.ones((self.graph.node_num, self.graph.node_num)) * self.init_pheromone_val # 启发式信息矩阵 self.heuristic_info_mat = 1 / graph.node_dist_mat # best path self.best_path_distance = None self.best_path = None self.whether_or_not_to_show_figure = False if self.whether_or_not_to_show_figure: # figure self.figure = VrptwAcoFigure(self.graph) def run(self): """ 运行蚁群优化算法 :return: """ # 最大迭代次数 for iter in range(self.max_iter): # 为每只蚂蚁设置当前车辆负载,当前旅行距离,当前时间 ants = list(Ant(self.graph) for _ in range(self.ants_num)) for k in range(self.ants_num): # 蚂蚁需要访问完所有的客户 while not ants[k].index_to_visit_empty(): next_index = self.select_next_index(ants[k]) # 判断加入该位置后,是否还满足约束条件, 如果不满足,则再选择一次,然后再进行判断 if not ants[k].check_condition(next_index): next_index = self.select_next_index(ants[k]) if not ants[k].check_condition(next_index): next_index = 0 # 更新蚂蚁路径 ants[k].move_to_next_index(next_index) self.local_update_pheromone(ants[k].current_index, next_index) # 最终回到0位置 ants[k].move_to_next_index(0) self.local_update_pheromone(ants[k].current_index, 0) # 计算所有蚂蚁的路径长度 paths_distance = np.array([ant.total_travel_distance for ant in ants]) # 记录当前的最佳路径 best_index = np.argmin(paths_distance) if self.best_path is None: self.best_path = ants[best_index].travel_path self.best_path_distance = paths_distance[best_index] if self.whether_or_not_to_show_figure: self.figure.init_figure(self.best_path) elif paths_distance[best_index] < self.best_path_distance: self.best_path = ants[best_index].travel_path self.best_path_distance = paths_distance[best_index] if self.whether_or_not_to_show_figure: self.figure.update_figure(self.best_path) print('[iteration %d]: best distance %f' % (iter, self.best_path_distance)) # 更新信息素表 self.global_update_pheromone() def select_next_index(self, ant: Ant): """ 选择下一个结点 :param ant: :return: """ current_index = ant.current_index index_to_visit = ant.index_to_visit transition_prob = np.power(self.pheromone_mat[current_index][index_to_visit], self.alpha) * \ np.power(self.heuristic_info_mat[current_index][index_to_visit], self.beta) if np.random.rand() < self.q0: max_prob_index = np.argmax(transition_prob) next_index = index_to_visit[max_prob_index] else: # 使用轮盘赌算法 next_index = self.stochastic_accept(index_to_visit, transition_prob) return next_index def local_update_pheromone(self, start_ind, end_ind): self.pheromone_mat[start_ind][end_ind] = (1-self.rho) * self.pheromone_mat[start_ind][end_ind] + \ self.rho * self.init_pheromone_val def global_update_pheromone(self): """ 更新信息素矩阵 :return: """ self.pheromone_mat = (1-self.rho) * self.pheromone_mat current_ind = self.best_path[0] for next_ind in self.best_path[1:]: self.pheromone_mat[current_ind][next_ind] += self.rho/self.best_path_distance current_ind = next_ind def stochastic_accept(self, index_to_visit, transition_prob): """ 轮盘赌 :param index_to_visit: a list of N index (list or tuple) :param transition_prob: :return: selected index """ # calculate N and max fitness value N = len(index_to_visit) # normalize sum_tran_prob = np.sum(transition_prob) norm_transition_prob = transition_prob/sum_tran_prob # select: O(1) while True: # randomly select an individual with uniform probability ind = int(N * random.random()) if random.random() <= norm_transition_prob[ind]: return index_to_visit[ind] def new_active_ant(self, k: int, local_search: bool, IN): # 对graph中的depot复制k-1,使得depot数量等于k new_graph = self.graph.construct_graph_with_duplicated_depot(k) # 从任意一个depot开始 start_index = random.randint(0, k-1) ant = Ant(new_graph, start_index) # 计算从当前位置可以达到的下一个位置 next_index_meet_constrains = ant.cal_next_index_meet_constrains() while len(next_index_meet_constrains) > 0: index_num = len(next_index_meet_constrains) ready_time = np.zeros(index_num) due_time = np.zeros(index_num) for i in range(index_num): ready_time[i] = new_graph.nodes[next_index_meet_constrains[i]].ready_time due_time[i] = new_graph.nodes[next_index_meet_constrains[i]].due_time delivery_time = np.max(ant.vehicle_travel_time + new_graph.node_dist_mat[ant.current_index][next_index_meet_constrains], ready_time) delat_time = delivery_time - ant.vehicle_travel_time distance = delat_time * (due_time - ant.vehicle_travel_time) distance = np.max(1.0, distance-IN) closeness = 1/distance # 按照概率选择下一个点next_index if np.random.rand() < self.q0: max_prob_index = np.argmax(closeness) next_index = next_index_meet_constrains[max_prob_index] else: # 使用轮盘赌算法 next_index = self.stochastic_accept(next_index_meet_constrains, closeness) ant.move_to_next_index(next_index) # 更新信息素矩阵 # 重新计算可选的下一个点 next_index_meet_constrains = ant.cal_next_index_meet_constrains() ant.insertion_procedure() # ant.index_to_visit_empty()==True就是feasible的意思 if local_search is True and ant.index_to_visit_empty(): new_path = ant.local_search_procedure() if new_path is not None: pass print('fuck') if __name__ == '__main__': file_path = './solomon-100/c101.txt' graph = VrptwGraph(file_path) vrptw = VrptwAco(graph) vrptw.run()