summaryrefslogtreecommitdiffstats
path: root/test/VRPTW_GA.ipynb
blob: 042836e41a64d73f63e70dfe75b2f0b9b79de7cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# APLICACIONES EN CIENCIAS DE COMPUTACION\n",
    "Dr. Edwin Villanueva"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "## Algoritmo genetico para resolver el VRPTW\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 140,
   "metadata": {},
   "outputs": [],
   "source": [
    "import random\n",
    "import matplotlib.pyplot as plt\n",
    "import csv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Clase abstracta de un individuo de algoritmo genético</b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "class Individual:\n",
    "    \"Clase abstracta para individuos de un algoritmo evolutivo.\"\n",
    "\n",
    "    def __init__(self, chromosome):\n",
    "        self.chromosome = chromosome\n",
    "\n",
    "    def crossover(self, other):\n",
    "        \"Retorna un nuevo individuo cruzando self y other.\"\n",
    "        raise NotImplementedError\n",
    "        \n",
    "    def mutate(self):\n",
    "        \"Cambia los valores de algunos genes.\"\n",
    "        raise NotImplementedError        "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Clase concreta de un individuo del problema de las n-reinas</b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 105,
   "metadata": {},
   "outputs": [],
   "source": [
    "class Individual_VRPTW(Individual):\n",
    "    \"Clase que implementa el individuo en VRPTW.\"\n",
    "\n",
    "    def __init__(self, chromosome):\n",
    "        self.chromosome = chromosome[:]\n",
    "        self.fitness = -1\n",
    "        \n",
    "    def crossover_order(self, other):\n",
    "        \"\"\"\n",
    "        Copies a part of the child chromosome from the first parent and constructs \n",
    "        the remaining part by following the vertex ordering in the second parent\n",
    "        \"\"\"\n",
    "        cut_point1 = random.randrange(0, len(self.chromosome) + 1)\n",
    "        cut_point2 = random.randrange(cut_point1, len(self.chromosome) + 1)\n",
    "        \n",
    "        c1 = self.chromosome[:]\n",
    "        c2 = other.chromosome[:]\n",
    "        p1_rem = self.chromosome[:cut_point1] + self.chromosome[cut_point2:]\n",
    "        p2_rem = other.chromosome[:cut_point1] + other.chromosome[cut_point2:]\n",
    "        # Change the genes in the remaining part of the child...\n",
    "        for i in range(len(self.chromosome)):\n",
    "            if i not in range(cut_point1, cut_point2):\n",
    "                # ...following the vertex ordering in the second parent\n",
    "                for gene in other.chromosome:\n",
    "                    if gene in p1_rem:\n",
    "                        c1.chromosome[i] = gene\n",
    "                        \n",
    "                # (now for the other child)\n",
    "                for gene in self.chromosome:\n",
    "                    if gene in p2_rem:\n",
    "                        c2.chromosome[i] = gene\n",
    "                        \n",
    "        return [Individual_VRPTW(c1), Individual_VRPTW(c2)]\n",
    "        \n",
    "\n",
    "    def crossover_onepoint(self, other):\n",
    "        \"Retorna dos nuevos individuos del cruzamiento de un punto entre self y other \"\n",
    "        c = random.randrange(len(self.chromosome))\n",
    "        ind1 = Individual_VRPTW(self.chromosome[:c] + other.chromosome[c:])\n",
    "        ind2 = Individual_VRPTW(other.chromosome[:c] + self.chromosome[c:])\n",
    "        return [ind1, ind2]   \n",
    "    \n",
    "    def crossover_uniform(self, other):\n",
    "        chromosome1 = []\n",
    "        chromosome2 = []\n",
    "        \"Retorna dos nuevos individuos del cruzamiento uniforme entre self y other \"\n",
    "        for i in range(len(self.chromosome)):\n",
    "            if random.uniform(0, 1) < 0.5:\n",
    "                chromosome1.append(self.chromosome[i])\n",
    "                chromosome2.append(other.chromosome[i])\n",
    "            else:\n",
    "                chromosome1.append(other.chromosome[i])\n",
    "                chromosome2.append(self.chromosome[i])\n",
    "        ind1 = Individual_VRPTW(chromosome1)\n",
    "        ind2 = Individual_VRPTW(chromosome2)\n",
    "        return [ind1, ind2]     \n",
    "\n",
    "    def mutate_position(self):\n",
    "        mutated_ind = Individual_VRPTW(self.chromosome[:])\n",
    "        indexPos = random.randint(0, len(mutated_ind.chromosome)-1)\n",
    "        newPos = random.randint(0, len(mutated_ind.chromosome)-1)\n",
    "        mutated_ind.chromosome[indexPos] = newPos\n",
    "        return mutated_ind\n",
    "    "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Funcion de fitness para evaluar un individuo del problema de las n-reinas</b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 109,
   "metadata": {},
   "outputs": [],
   "source": [
    "def fitness_VRPTW(chromosome):\n",
    "    \"\"\"Retorna el fitness de un cromosoma en el problema VRPTW (distancia total de todas las rutas) \"\"\"\n",
    "    n = len(chromosome)  # No. of vertices\n",
    "    fitness = 10**6\n",
    "    # feasibility\n",
    "    # TODO: considerar todas las restricciones\n",
    "    # desirability\n",
    "    for i in range(0, n):\n",
    "        fitness -= distancia[i][i + 1]\n",
    "        \n",
    "    return fitness"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Funcion para evaluar toda una población de individuos con la funcion de fitnes especificada</b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "def evaluate_population(population, fitness_fn):\n",
    "    \"\"\" Evalua una poblacion de individuos con la funcion de fitness pasada \"\"\"\n",
    "    popsize = len(population)\n",
    "    for i in range(popsize):\n",
    "        if population[i].fitness == -1:    # si el individuo no esta evaluado\n",
    "            population[i].fitness = fitness_fn(population[i].chromosome)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Funcion que selecciona con el metodo de la ruleta un par de individuos de population para cruzamiento </b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 103,
   "metadata": {},
   "outputs": [],
   "source": [
    "def select_parents_roulette(population):\n",
    "    popsize = len(population)\n",
    "    \n",
    "    # Escoje el primer padre\n",
    "    sumfitness = sum([indiv.fitness for indiv in population])  # suma total del fitness de la poblacion\n",
    "    pickfitness = random.uniform(0, sumfitness)   # escoge un numero aleatorio entre 0 y sumfitness\n",
    "    cumfitness = 0     # fitness acumulado\n",
    "    for i in range(popsize):\n",
    "        cumfitness += population[i].fitness\n",
    "        if cumfitness > pickfitness: \n",
    "            iParent1 = i\n",
    "            break\n",
    "     \n",
    "    # Escoje el segundo padre, desconsiderando el padre ya escogido\n",
    "    sumfitness = sumfitness - population[iParent1].fitness # retira el fitness del padre ya escogido\n",
    "    pickfitness = random.uniform(0, sumfitness)   # escoge un numero aleatorio entre 0 y sumfitness\n",
    "    cumfitness = 0     # fitness acumulado\n",
    "    for i in range(popsize):\n",
    "        if i == iParent1: continue   # si es el primer padre \n",
    "        cumfitness += population[i].fitness\n",
    "        if cumfitness > pickfitness: \n",
    "            iParent2 = i\n",
    "            break        \n",
    "    return (population[iParent1], population[iParent2])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Funcion que selecciona sobrevivientes para la sgte generacion, dada la poblacion actual y poblacion de hijos </b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "def select_survivors(population, offspring_population, numsurvivors):\n",
    "    next_population = []\n",
    "    population.extend(offspring_population) # une las dos poblaciones\n",
    "    isurvivors = sorted(range(len(population)), key=lambda i: population[i].fitness, reverse=True)[:numsurvivors]\n",
    "    for i in range(numsurvivors): next_population.append(population[isurvivors[i]])\n",
    "    return next_population"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Algoritmo Genetico</b>   \n",
    "Recibe una poblacion inicial, funcion de fitness, numero de generaciones (ngen) y taza de mutación (pmut)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "def genetic_algorithm(population, fitness_fn, ngen=100, pmut=0.1):\n",
    "    \"Algoritmo Genetico \"\n",
    "    \n",
    "    popsize = len(population)\n",
    "    evaluate_population(population, fitness_fn)  # evalua la poblacion inicial\n",
    "    ibest = sorted(range(len(population)), key=lambda i: population[i].fitness, reverse=True)[:1]\n",
    "    bestfitness = [population[ibest[0]].fitness]\n",
    "    print(\"Poblacion inicial, best_fitness = {}\".format(population[ibest[0]].fitness))\n",
    "    \n",
    "    for g in range(ngen):   # Por cada generacion\n",
    "        \n",
    "        ## Selecciona las parejas de padres para cruzamiento \n",
    "        mating_pool = []\n",
    "        for i in range(int(popsize/2)): mating_pool.append(select_parents_roulette(population)) \n",
    "        \n",
    "        ## Crea la poblacion descendencia cruzando las parejas del mating pool con Recombinación de 1 punto\n",
    "        offspring_population = []\n",
    "        for i in range(len(mating_pool)): \n",
    "            #offspring_population.extend( mating_pool[i][0].crossover_onepoint(mating_pool[i][1]) )\n",
    "            #offspring_population.extend( mating_pool[i][0].crossover_uniform(mating_pool[i][1]) )\n",
    "            offspring_population.extend( mating_pool[i][0].crossover_order(mating_pool[i][1]) )\n",
    "\n",
    "        ## Aplica el operador de mutacion con probabilidad pmut en cada hijo generado\n",
    "        for i in range(len(offspring_population)):\n",
    "            if random.uniform(0, 1) < pmut: \n",
    "                offspring_population[i] = offspring_population[i].mutate_position()\n",
    "        \n",
    "        ## Evalua la poblacion descendencia\n",
    "        evaluate_population(offspring_population, fitness_fn)  # evalua la poblacion inicial\n",
    "        \n",
    "        ## Selecciona popsize individuos para la sgte. generación de la union de la pob. actual y  pob. descendencia\n",
    "        population = select_survivors(population, offspring_population, popsize)\n",
    "\n",
    "        ## Almacena la historia del fitness del mejor individuo\n",
    "        ibest = sorted(range(len(population)), key=lambda i: population[i].fitness, reverse=True)[:1]\n",
    "        bestfitness.append(population[ibest[0]].fitness)\n",
    "        print(\"generacion {}, best_fitness = {}\".format(g, population[ibest[0]].fitness))\n",
    "    \n",
    "    return population[ibest[0]], bestfitness  "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    " <b>Algoritmo de Busqueda Genetica para el VRPTW</b>   "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 117,
   "metadata": {},
   "outputs": [],
   "source": [
    "def genetic_algorithm_VRPTW(fitness_fn, num_depots=1, num_vehicles=1, vehicle_capacity=200, popsize=10, ngen=1000, pmut=0):\n",
    "    population = []\n",
    "    \n",
    "    # Crea la poblacion inicial con cromosomas aleatorios\n",
    "    for i in range(popsize):\n",
    "        chromosome = [j for j in range(1,num_vertices+1)]\n",
    "        random.shuffle(chromosome)\n",
    "        population.append(Individual_VRPTW(chromosome))\n",
    "        \n",
    "    return genetic_algorithm(population, fitness_fn, ngen, pmut)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "def genetic_search_nqueens(fitness_fn, num_queens=10, popsize=10, ngen=100, pmut=0.5):\n",
    "    import random\n",
    "    population = []\n",
    "\n",
    "    ## Crea la poblacion inicial con cromosomas aleatorios\n",
    "    for i in range(popsize):\n",
    "        chromosome = [j for j in range(1,num_queens+1)]\n",
    "        random.shuffle(chromosome)\n",
    "        population.append( Individual_nqueens(chromosome) )\n",
    "        \n",
    "    ## Crea la poblacion inicial con los siguientes cromosomas    \n",
    "    #chromosomes = [[1,3,1,3,1,3,1,3,1,3],\n",
    "    #               [2,4,2,4,2,4,2,4,2,4],\n",
    "    #               [3,5,3,5,3,5,3,5,3,5],\n",
    "    #               [4,6,4,6,4,6,4,6,4,6],\n",
    "    #               [5,7,5,7,5,7,5,7,5,7],\n",
    "    #               [6,8,6,8,6,8,6,8,6,8],\n",
    "    #               [7,9,7,9,7,9,7,9,7,9],\n",
    "    #               [8,10,8,10,8,10,8,10,8,10],\n",
    "    #               [9,1,9,1,9,1,9,1,9,1],\n",
    "    #               [10,2,10,2,10,2,10,2,10,2] ]   \n",
    "    #for i in range(popsize):\n",
    "    #    population.append( Individual_nqueens(chromosomes[i]) )   \n",
    "        \n",
    "    ## llama al algoritmo genetico para encontrar una solucion al problema de las n reinas\n",
    "    return genetic_algorithm(population, fitness_fn, ngen, pmut)\n",
    "        "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Probando el Algoritmo genetico"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 115,
   "metadata": {},
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'distancia' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Input \u001b[0;32mIn [115]\u001b[0m, in \u001b[0;36m<cell line: 4>\u001b[0;34m()\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpyplot\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mplt\u001b[39;00m\n\u001b[1;32m      3\u001b[0m \u001b[38;5;66;03m# busca solucion para el problema de 10 reinas. Usa 100 individuos aleatorios, 100 generaciones y taza de mutación de 0.5\u001b[39;00m\n\u001b[0;32m----> 4\u001b[0m best_ind, bestfitness \u001b[38;5;241m=\u001b[39m \u001b[43mgenetic_algorithm_VRPTW\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfitness_VRPTW\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m      5\u001b[0m plt\u001b[38;5;241m.\u001b[39mplot(bestfitness)\n\u001b[1;32m      6\u001b[0m plt\u001b[38;5;241m.\u001b[39mshow()\n",
      "Input \u001b[0;32mIn [113]\u001b[0m, in \u001b[0;36mgenetic_algorithm_VRPTW\u001b[0;34m(fitness_fn, num_vertices, num_depots, num_vehicles, popsize, ngen, pmut)\u001b[0m\n\u001b[1;32m      7\u001b[0m     random\u001b[38;5;241m.\u001b[39mshuffle(chromosome)\n\u001b[1;32m      8\u001b[0m     population\u001b[38;5;241m.\u001b[39mappend(Individual_VRPTW(chromosome))\n\u001b[0;32m---> 10\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgenetic_algorithm\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpopulation\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfitness_fn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mngen\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpmut\u001b[49m\u001b[43m)\u001b[49m\n",
      "Input \u001b[0;32mIn [10]\u001b[0m, in \u001b[0;36mgenetic_algorithm\u001b[0;34m(population, fitness_fn, ngen, pmut)\u001b[0m\n\u001b[1;32m      2\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAlgoritmo Genetico \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m      4\u001b[0m popsize \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlen\u001b[39m(population)\n\u001b[0;32m----> 5\u001b[0m \u001b[43mevaluate_population\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpopulation\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfitness_fn\u001b[49m\u001b[43m)\u001b[49m  \u001b[38;5;66;03m# evalua la poblacion inicial\u001b[39;00m\n\u001b[1;32m      6\u001b[0m ibest \u001b[38;5;241m=\u001b[39m \u001b[38;5;28msorted\u001b[39m(\u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(population)), key\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mlambda\u001b[39;00m i: population[i]\u001b[38;5;241m.\u001b[39mfitness, reverse\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)[:\u001b[38;5;241m1\u001b[39m]\n\u001b[1;32m      7\u001b[0m bestfitness \u001b[38;5;241m=\u001b[39m [population[ibest[\u001b[38;5;241m0\u001b[39m]]\u001b[38;5;241m.\u001b[39mfitness]\n",
      "Input \u001b[0;32mIn [7]\u001b[0m, in \u001b[0;36mevaluate_population\u001b[0;34m(population, fitness_fn)\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(popsize):\n\u001b[1;32m      5\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m population[i]\u001b[38;5;241m.\u001b[39mfitness \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m:    \u001b[38;5;66;03m# si el individuo no esta evaluado\u001b[39;00m\n\u001b[0;32m----> 6\u001b[0m         population[i]\u001b[38;5;241m.\u001b[39mfitness \u001b[38;5;241m=\u001b[39m \u001b[43mfitness_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpopulation\u001b[49m\u001b[43m[\u001b[49m\u001b[43mi\u001b[49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mchromosome\u001b[49m\u001b[43m)\u001b[49m\n",
      "Input \u001b[0;32mIn [109]\u001b[0m, in \u001b[0;36mfitness_VRPTW\u001b[0;34m(chromosome)\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[38;5;66;03m# feasibility\u001b[39;00m\n\u001b[1;32m      6\u001b[0m \u001b[38;5;66;03m# TODO: considerar todas las restricciones\u001b[39;00m\n\u001b[1;32m      7\u001b[0m \u001b[38;5;66;03m# desirability\u001b[39;00m\n\u001b[1;32m      8\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m0\u001b[39m, n):\n\u001b[0;32m----> 9\u001b[0m     fitness \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[43mdistancia\u001b[49m[i][i \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1\u001b[39m]\n\u001b[1;32m     11\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fitness\n",
      "\u001b[0;31mNameError\u001b[0m: name 'distancia' is not defined"
     ]
    }
   ],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "\n",
    "best_ind, bestfitness = genetic_algorithm_VRPTW(fitness_VRPTW)\n",
    "plt.plot(bestfitness)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 141,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Poblacion inicial, best_fitness = 44\n",
      "generacion 0, best_fitness = 44\n",
      "generacion 1, best_fitness = 44\n",
      "generacion 2, best_fitness = 44\n",
      "generacion 3, best_fitness = 44\n",
      "generacion 4, best_fitness = 44\n",
      "generacion 5, best_fitness = 44\n",
      "generacion 6, best_fitness = 44\n",
      "generacion 7, best_fitness = 44\n",
      "generacion 8, best_fitness = 44\n",
      "generacion 9, best_fitness = 44\n",
      "generacion 10, best_fitness = 44\n",
      "generacion 11, best_fitness = 44\n",
      "generacion 12, best_fitness = 44\n",
      "generacion 13, best_fitness = 44\n",
      "generacion 14, best_fitness = 44\n",
      "generacion 15, best_fitness = 44\n",
      "generacion 16, best_fitness = 44\n",
      "generacion 17, best_fitness = 44\n",
      "generacion 18, best_fitness = 44\n",
      "generacion 19, best_fitness = 44\n",
      "generacion 20, best_fitness = 44\n",
      "generacion 21, best_fitness = 44\n",
      "generacion 22, best_fitness = 44\n",
      "generacion 23, best_fitness = 44\n",
      "generacion 24, best_fitness = 44\n",
      "generacion 25, best_fitness = 44\n",
      "generacion 26, best_fitness = 44\n",
      "generacion 27, best_fitness = 44\n",
      "generacion 28, best_fitness = 44\n",
      "generacion 29, best_fitness = 44\n",
      "generacion 30, best_fitness = 45\n",
      "generacion 31, best_fitness = 45\n",
      "generacion 32, best_fitness = 45\n",
      "generacion 33, best_fitness = 45\n",
      "generacion 34, best_fitness = 45\n",
      "generacion 35, best_fitness = 45\n",
      "generacion 36, best_fitness = 45\n",
      "generacion 37, best_fitness = 45\n",
      "generacion 38, best_fitness = 45\n",
      "generacion 39, best_fitness = 45\n",
      "generacion 40, best_fitness = 45\n",
      "generacion 41, best_fitness = 45\n",
      "generacion 42, best_fitness = 45\n",
      "generacion 43, best_fitness = 45\n",
      "generacion 44, best_fitness = 45\n",
      "generacion 45, best_fitness = 45\n",
      "generacion 46, best_fitness = 45\n",
      "generacion 47, best_fitness = 45\n",
      "generacion 48, best_fitness = 45\n",
      "generacion 49, best_fitness = 45\n",
      "generacion 50, best_fitness = 45\n",
      "generacion 51, best_fitness = 45\n",
      "generacion 52, best_fitness = 45\n",
      "generacion 53, best_fitness = 45\n",
      "generacion 54, best_fitness = 45\n",
      "generacion 55, best_fitness = 45\n",
      "generacion 56, best_fitness = 45\n",
      "generacion 57, best_fitness = 45\n",
      "generacion 58, best_fitness = 45\n",
      "generacion 59, best_fitness = 45\n",
      "generacion 60, best_fitness = 45\n",
      "generacion 61, best_fitness = 45\n",
      "generacion 62, best_fitness = 45\n",
      "generacion 63, best_fitness = 45\n",
      "generacion 64, best_fitness = 45\n",
      "generacion 65, best_fitness = 45\n",
      "generacion 66, best_fitness = 45\n",
      "generacion 67, best_fitness = 45\n",
      "generacion 68, best_fitness = 45\n",
      "generacion 69, best_fitness = 45\n",
      "generacion 70, best_fitness = 45\n",
      "generacion 71, best_fitness = 45\n",
      "generacion 72, best_fitness = 45\n",
      "generacion 73, best_fitness = 45\n",
      "generacion 74, best_fitness = 45\n",
      "generacion 75, best_fitness = 45\n",
      "generacion 76, best_fitness = 45\n",
      "generacion 77, best_fitness = 45\n",
      "generacion 78, best_fitness = 45\n",
      "generacion 79, best_fitness = 45\n",
      "generacion 80, best_fitness = 45\n",
      "generacion 81, best_fitness = 45\n",
      "generacion 82, best_fitness = 45\n",
      "generacion 83, best_fitness = 45\n",
      "generacion 84, best_fitness = 45\n",
      "generacion 85, best_fitness = 45\n",
      "generacion 86, best_fitness = 45\n",
      "generacion 87, best_fitness = 45\n",
      "generacion 88, best_fitness = 45\n",
      "generacion 89, best_fitness = 45\n",
      "generacion 90, best_fitness = 45\n",
      "generacion 91, best_fitness = 45\n",
      "generacion 92, best_fitness = 45\n",
      "generacion 93, best_fitness = 45\n",
      "generacion 94, best_fitness = 45\n",
      "generacion 95, best_fitness = 45\n",
      "generacion 96, best_fitness = 45\n",
      "generacion 97, best_fitness = 45\n",
      "generacion 98, best_fitness = 45\n",
      "generacion 99, best_fitness = 45\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAATz0lEQVR4nO3dYbBc513f8e/PV4kd23GtYDVGVtxrxk47AQKYO2k6pq3HtCHYqkgG3HFJS17AGGZw6xaoiaYzaeKSF9Q0uE4pMxqTkDY0aevS9ta0ZIKNhhkGQiTbJFEUGgUT4iBXchNIlQxKdvffF7tX3tzcq7v3nCvvOavvZ+aOdp/ds/ucOXt++t9nn/ucVBWSpMV1ybw7IEm6sAx6SVpwBr0kLTiDXpIWnEEvSQtu17w7sN4111xTy8vL8+6GJPXK0aNHn6uqPRs91rmgX15e5siRI/PuhiT1SpLPbPaYQzeStOAMeklacAa9JC04g16SFpxBL0kLbuagT7KU5Mkkj07u/3KSp5M8Nfn59k22e3OST01+3rxD/ZYkzWg70yvvBY4DV021/dOqemSzDZK8DPjnwApQwNEkq1X1hSadlSRt30xBn2QfcAfwDuAntvH63wN8qKo+P3mdDwGvB96/zX6qww7/wSme+Iz/d0ttvfLal7L/1Xt3/HVnregfBO4DXrqu/R1J3go8Brylqs6ue/w64LNT95+ZtH2NJHcDdwNcf/31M3ZJXfH2//EJnn7uSyTz7onUb/tfvXc+QZ9kP3Cqqo4muXXqoYPAs8CLgUPATwP3N+lEVR2avAYrKyteCaVnvjIY8f037+Nf/d1vm3dXJG1gli9jbwEOJPkj4APAbUneV1Una+ws8B7gNRts+zngFVP3903atECGo2LXJZbzUldtGfRVdbCq9lXVMnAX8HhV/f0k3wiQJMAbgI9vsPkHgdcl2Z1kN/C6SZsWyGBULC0Z9FJXtVnU7FeS7AECPAX8GECSFeDHqupHqurzSf4F8JHJNvevfTGrxTEcjazopQ7bVtBX1WHg8OT2bZs85wjwI1P33w28u3EP1XmDUbFk0Eud5V/GqjXH6KVuM+jV2rii96MkdZVnp1qzope6zaBXK1XF0DF6qdMMerUyHI3/vs2KXuoug16tDCZB7zx6qbsMerViRS91n0GvVs5V9M66kTrLs1OtWNFL3WfQq5XBaATgrBupwwx6tWJFL3WfQa9WBsO1MXqDXuoqg16tDEcGvdR1Br1aGZZBL3WdQa9Wnh+j96MkdZVnp1pxjF7qPoNerTjrRuo+g16tnJtH71o3UmcZ9GrFil7qPoNerQycXil1nkGvVpx1I3WfZ6dasaKXus+gVyvDyZexjtFL3WXQqxXn0UvdZ9CrlXNj9E6vlDrLoFcrA6dXSp1n0KuVoZcSlDrPs1OtWNFL3WfQq5WhlxKUOs+gVyvOo5e6z6BXKyODXuq8mYM+yVKSJ5M8uq79oSRnNtnmRUnem+RjSY4nOdi2w+oWx+il7ttORX8vcHy6IckKsPs829wJXFpV3wp8J/CjSZa320l1l9eMlbpvpqBPsg+4A3h4qm0JeAC47zybFnBFkl3AS4CvAF9s3Ft1zsBFzaTOm/XsfJBxoI+m2u4BVqvq5Hm2ewT4EnAS+GPg56rq8+uflOTuJEeSHDl9+vSMXVIXWNFL3bdl0CfZD5yqqqNTbXsZD8u8a4vNXwMMgb3ADcBPJvmm9U+qqkNVtVJVK3v27NlO/zVna2vdOEYvddeuGZ5zC3Agye3AZcBVwDHgLHAiCcDlSU5U1Y3rtv1B4Ner6qvAqSS/DawAf7hTO6D5Go5GJHCJQS911pYVfVUdrKp9VbUM3AU8XlW7q+raqlqetH95g5CH8XDNbQBJrgBeC3xyx3qvuRuMympe6rgd/wYtyYEk90/u/gJwZZJjwEeA91TVR3f6PTU/w1E5Pi913CxDN+dU1WHg8AbtV07dXgVWJ7fPMB7L14IaV/TOuJG6zDNUrVjRS91n0KuVwWjkGL3UcQa9WrGil7rPoFcrg6GzbqSuM+jVynBULHm9WKnTDHq1MhgVSzHopS4z6NXKsByjl7rOoFcrw6Hz6KWu8wxVKwNn3UidZ9CrleFoxC6/jJU6zaBXK1b0UvcZ9Gpl6OqVUucZ9GrFil7qPoNerQxdvVLqPM9QtWJFL3WfQa9Whq5eKXWeQa9WBkMreqnrDHq1MhyV8+iljjPo1cp4PXo/RlKXeYaqlYHz6KXOM+jVileYkrrPoFcrXjNW6j6DXq0MR8UlBr3UaQa9WnGtG6n7DHq14l/GSt1n0KsVK3qp+wx6tTJwHr3UeZ6hasWKXuo+g16NVZXz6KUeMOjV2HBUAFb0UsfNHPRJlpI8meTRde0PJTlznu1eneR3khxL8rEkl7XpsLpjMAn6JRc1kzpt1zaeey9wHLhqrSHJCrB7sw2S7ALeB/yDqvr9JN8AfLVhX9UxVvRSP8xU0SfZB9wBPDzVtgQ8ANx3nk1fB3y0qn4foKr+b1UNm3dXXXKuonfWjdRps56hDzIO9NFU2z3AalWdPM92rwQqyQeTPJFkw/8Uktyd5EiSI6dPn56xS5o3K3qpH7YM+iT7gVNVdXSqbS9wJ/CuLTbfBXwX8KbJv29M8t3rn1RVh6pqpapW9uzZs53+a44Go/H/+866kbptljH6W4ADSW4HLmM8Rn8MOAucSAJweZITVXXjum2fAX6rqp4DSPI/gZuBx3ao/5ojK3qpH7as6KvqYFXtq6pl4C7g8araXVXXVtXypP3LG4Q8wAeBb01y+eSL2b8JfGIH+685GgzXxugNeqnLdvxbtCQHktwPUFVfAN4JfAR4Cniiqn5tp99T83Guond6pdRp25leSVUdBg5v0H7l1O1VYHXq/vsYT7HUgnHWjdQPnqFqbK2iX4oVvdRlBr0aOxf0jtFLnWbQqzFn3Uj9YNCrsXPz6P0yVuo0g16NWdFL/WDQq7GBY/RSLxj0auz5it6PkdRlnqFqzIpe6geDXo0NJ1/GOkYvdZtBr8Zc60bqB4NejbnWjdQPBr0aGzi9UuoFg16NDV3UTOoFz1A1ZkUv9YNBr8aGXkpQ6gWDXo1Z0Uv9YNCrMZcplvrBoFdjzqOX+sGgV2OjMuilPjDo1djARc2kXvAMVWOO0Uv9YNCrsbUxemfdSN1m0Kux4WhEApcY9FKnGfRqbDAqq3mpBwx6NTYclePzUg8Y9GpsXNH7EZK6zrNUjVnRS/1g0KuxwWjkGL3UAwa9GrOil/rBoFdjg6GzbqQ+MOjV2HBULHm9WKnzZg76JEtJnkzy6Lr2h5Kc2WLb65OcSfJTTTuq7nHWjdQP2zlL7wWOTzckWQF2z7DtO4H/tY33Ug84Ri/1w0xBn2QfcAfw8FTbEvAAcN8W274BeBo41riX6qTBaMRSDHqp62at6B9kHOijqbZ7gNWqOrnZRkmuBH4aePv5XjzJ3UmOJDly+vTpGbukeRuOXLlS6oMtgz7JfuBUVR2datsL3Am8a4vN3wb8fFWddwy/qg5V1UpVrezZs2frXqsThqMRu/wyVuq8XTM85xbgQJLbgcuAqxgPw5wFTmT8q/vlSU5U1Y3rtv2rwA8k+ZfA1cAoyZ9X1b/ZqR3Q/Awco5d6Ycugr6qDwEGAJLcCP1VV+6efk+TMBiFPVf31qee8DThjyC+OoatXSr2w43PjkhxIcv9Ov666x4pe6odZhm7OqarDwOEN2q+cur0KrG7wnLdtu3fqtOGoePGLlubdDUlb8K9d1JgVvdQPBr0aG7p6pdQLBr0aGwyt6KU+MOjV2HBUzqOXesCgV2PjtW78CEld51mqxgbOo5d6waBXY65eKfWDQa/GvGas1A8GvRqzopf6waBXY47RS/1g0Kux4bC4xKCXOs+gV2PDsqKX+sCgV2MD59FLveBZqsZcj17qB4NejVSVs26knjDo1chwVABW9FIPGPRqZDAJ+iUXNZM6z6BXI1b0Un8Y9GrkXEXvrBup8zxL1YgVvdQfBr0aGYxGAM66kXrAoFcjVvRSfxj0amQwXBujN+ilrjPo1ci5it7plVLnGfRqxFk3Un94lqoRx+il/jDo1YizbqT+MOjVyFpFvxSDXuo6g16NDF3rRuoNg16NOEYv9cfMQZ9kKcmTSR5d1/5QkjObbPO3kxxN8rHJv7e17bC64flZNwa91HW7tvHce4HjwFVrDUlWgN3n2eY54O9U1Z8k+Rbgg8B1TTqqbnm+oveXQqnrZjpLk+wD7gAenmpbAh4A7ttsu6p6sqr+ZHL3GPCSJJc27666wope6o9Zy7EHGQf6aKrtHmC1qk7O+BrfDzxRVWfXP5Dk7iRHkhw5ffr0jC+neRpOplc6Ri9135ZBn2Q/cKqqjk617QXuBN41y5sk+WbgZ4Ef3ejxqjpUVStVtbJnz56ZOq75cq0bqT9mGaO/BTiQ5HbgMsZj9MeAs8CJjOdRX57kRFXduH7jybDPfwV+qKo+vWM911y51o3UH1tW9FV1sKr2VdUycBfweFXtrqprq2p50v7lTUL+auDXgLdU1W/vbNc1TwOnV0q9seNTJpIcSHL/5O49wI3AW5M8Nfn5izv9nnrhDV3UTOqN7UyvpKoOA4c3aL9y6vYqsDq5/TPAz7TqoTrJil7qD8sxNTJ0UTOpNwx6NWJFL/WHQa9Ghv7BlNQbBr0aWZtH7xIIUvd5lqoRlymW+sOgVyMDLzwi9YZBr0ZG5Ri91BcGvRp5fozeoJe6zqBXI8PRiAQuMeilzjPo1chgVFbzUk8Y9GpkOCrH56WeMOjVyLii9+Mj9YFnqhqxopf6w6BXI4PRyDF6qScMejViRS/1h0GvRgZDZ91IfWHQq5HhqFznRuoJg16NOOtG6g/PVDXiGL3UHwa9GnHWjdQfBr0asaKX+sOgVyMDg17qDYNejVjRS/1h0KuRoatXSr1h0KsRh26k/jDo1cjQefRSb3imqhEreqk/DHo1MnQevdQbBr0aGQyt6KW+MOjVyHBU7HJRM6kXDHo1Mp5H78dH6oOZz9QkS0meTPLouvaHkpw5z3YHk5xI8gdJvqdNZ9UdA+fRS72xaxvPvRc4Dly11pBkBdi92QZJXgXcBXwzsBf4jSSvrKphs+6qK/zLWKk/Zgr6JPuAO4B3AD8xaVsCHgB+EHjjJpt+H/CBqjoLPJ3kBPAa4Hda9vvrfPLZL/IP/8OTO/2y2sSzX/xzlmLQS30wa0X/IHAf8NKptnuA1ao6mc1P+OuA3526/8yk7WskuRu4G+D666+fsUtf67JdS9z08isbbavte+XLX8obb/66Qympg7YM+iT7gVNVdTTJrZO2vcCdwK070YmqOgQcAlhZWakmr7F8zRX82zd95050R5IWyiwV/S3AgSS3A5cxHqM/BpwFTkyq+cuTnKiqG9dt+zngFVP3903aJEkvkC1n3VTVwaraV1XLjL9YfbyqdlfVtVW1PGn/8gYhD7AK3JXk0iQ3ADcBv7eD/ZckbWE7s25mkuQAsFJVb62qY0n+E/AJYAD8uDNuJOmFlapGQ+IXzMrKSh05cmTe3ZCkXklytKpWNnrMP22UpAVn0EvSgjPoJWnBGfSStOA692VsktPAZ1q8xDXAczvUnT642PYX3OeLhfu8PX+pqvZs9EDngr6tJEc2++Z5EV1s+wvu88XCfd45Dt1I0oIz6CVpwS1i0B+adwdeYBfb/oL7fLFwn3fIwo3RS5K+1iJW9JKkKQa9JC24hQn6JK+fXID8RJK3zLs/F0KSVyT5zSSfSHIsyb2T9pcl+VCST03+3fQ6vn20/sL0SW5I8uHJsf6PSV487z7utCRXJ3kkySeTHE/y1xb5OCf5J5PP9MeTvD/JZYt4nJO8O8mpJB+fatvwuGbsocn+fzTJzU3fdyGCfnL92l8Avhd4FfD3JhcmXzQD4Cer6lXAa4Efn+znW4DHquom4LHJ/UWydmH6NT8L/PzkGghfAH54Lr26sP418OtV9VeAb2O8/wt5nJNcB/wjxsubfwuwxPjaF4t4nH8ZeP26ts2O6/cyvobHTYwvtfqLTd90IYKe8QXHT1TVH1bVV4APML4w+UKpqpNV9cTk9v9jfPJfx3hf3zt52nuBN8ylgxfA1IXpH57cD3Ab8MjkKQu1vwBJ/gLwN4BfAqiqr1TVn7LAx5nxtTFekmQXcDlwkgU8zlX1W8Dn1zVvdly/D/h3Nfa7wNVJvrHJ+y5K0F8HfHbq/oYXIV8kSZaB7wA+DLy8qk5OHnoWePm8+nUBPMj4wvSjyf1vAP60qgaT+4t4rG8ATgPvmQxZPZzkChb0OFfV54CfA/6YccD/GXCUxT/OazY7rjuWa4sS9BeVJFcC/wX4x1X1xenHajxfdiHmzE5fmH7efXmB7QJuBn6xqr4D+BLrhmkW7DjvZly93gDsBa7g64c3LgoX6rguStBfNBchT/IixiH/K1X1q5Pm/7P2K93k31Pz6t8OW7sw/R8xHo67jfHY9dWTX/FhMY/1M8AzVfXhyf1HGAf/oh7nvwU8XVWnq+qrwK8yPvaLfpzXbHZcdyzXFiXoPwLcNPmW/sWMv8hZnXOfdtxkfPqXgONV9c6ph1aBN09uvxn47y903y6ETS5M/ybgN4EfmDxtYfZ3TVU9C3w2yV+eNH034+suL+RxZjxk89okl08+42v7u9DHecpmx3UV+KHJ7JvXAn82NcSzPVW1ED/A7cD/Bj4N/LN59+cC7eN3Mf617qPAU5Of2xmPWz8GfAr4DeBl8+7rBdj3W4FHJ7e/Cfg94ATwn4FL592/C7C/3w4cmRzr/wbsXuTjDLwd+CTwceDfA5cu4nEG3s/4e4ivMv7N7Yc3O65AGM8m/DTwMcazkhq9r0sgSNKCW5ShG0nSJgx6SVpwBr0kLTiDXpIWnEEvSQvOoJekBWfQS9KC+//Rh3QID9ptGwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 343 ms, sys: 108 ms, total: 450 ms\n",
      "Wall time: 329 ms\n"
     ]
    }
   ],
   "source": [
    "%%time\n",
    "# busca solucion para el problema de 10 reinas. Usa 100 individuos aleatorios, 100 generaciones y taza de mutación de 0.5\n",
    "best_ind, bestfitness = genetic_search_nqueens(fitness_nqueens, 10, 100, 100, 0.90)\n",
    "plt.plot(bestfitness)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Lectura de datos"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 139,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CUST NO.XCOORD. YCOORD. DEMAND  READY TIME  DUE DATE    SERVICE TIME\n",
      "1       40      50      0       0           240         0           \n",
      "2       25      85      20      145         175         10          \n",
      "3       22      75      30      50          80          10          \n",
      "4       22      85      10      109         139         10          \n",
      "5       20      80      40      141         171         10          \n",
      "6       20      85      20      41          71          10          \n",
      "7       18      75      20      95          125         10          \n",
      "8       15      75      20      79          109         10          \n",
      "9       15      80      10      91          121         10          \n",
      "10      10      35      20      91          121         10          \n",
      "11      10      40      30      119         149         10          \n",
      "12      8       40      40      59          89          10          \n",
      "13      8       45      20      64          94          10          \n",
      "14      5       35      10      142         172         10          \n",
      "15      5       45      10      35          65          10          \n",
      "16      2       40      20      58          88          10          \n",
      "17      0       40      20      72          102         10          \n",
      "18      0       45      20      149         179         10          \n",
      "19      44      5       20      87          117         10          \n",
      "20      42      10      40      72          102         10          \n",
      "21      42      15      10      122         152         10          \n",
      "22      40      5       10      67          97          10          \n",
      "23      40      15      40      92          122         10          \n",
      "24      38      5       30      65          95          10          \n",
      "25      38      15      10      148         178         10          \n",
      "26      35      5       20      154         184         10          \n",
      "27      95      30      30      115         145         10          \n",
      "28      95      35      20      62          92          10          \n",
      "29      92      30      10      62          92          10          \n",
      "30      90      35      10      67          97          10          \n",
      "31      88      30      10      74          104         10          \n",
      "32      88      35      20      61          91          10          \n",
      "33      87      30      10      131         161         10          \n",
      "34      85      25      10      51          81          10          \n",
      "35      85      35      30      111         141         10          \n",
      "36      67      85      20      139         169         10          \n",
      "37      65      85      40      43          73          10          \n",
      "38      65      82      10      124         154         10          \n",
      "39      62      80      30      75          105         10          \n",
      "40      60      80      10      37          67          10          \n",
      "41      60      85      30      85          115         10          \n",
      "42      58      75      20      92          122         10          \n",
      "43      55      80      10      33          63          10          \n",
      "44      55      85      20      128         158         10          \n",
      "45      55      82      10      64          94          10          \n",
      "46      20      82      10      37          67          10          \n",
      "47      18      80      10      113         143         10          \n",
      "48      2       45      10      45          75          10          \n",
      "49      42      5       10      151         181         10          \n",
      "50      42      12      10      104         134         10          \n",
      "51      72      35      30      116         146         10          \n",
      "52      55      20      19      83          113         10          \n",
      "53      25      30      3       52          82          10          \n",
      "54      20      50      5       91          121         10          \n",
      "55      55      60      16      139         169         10          \n",
      "56      30      60      16      140         170         10          \n",
      "57      50      35      19      130         160         10          \n",
      "58      30      25      23      96          126         10          \n",
      "59      15      10      20      152         182         10          \n",
      "60      10      20      19      42          72          10          \n",
      "61      15      60      17      155         185         10          \n",
      "62      45      65      9       66          96          10          \n",
      "63      65      35      3       52          82          10          \n",
      "64      65      20      6       39          69          10          \n",
      "65      45      30      17      53          83          10          \n",
      "66      35      40      16      11          41          10          \n",
      "67      41      37      16      133         163         10          \n",
      "68      64      42      9       70          100         10          \n",
      "69      40      60      21      144         174         10          \n",
      "70      31      52      27      41          71          10          \n",
      "71      35      69      23      180         210         10          \n",
      "72      65      55      14      65          95          10          \n",
      "73      63      65      8       30          60          10          \n",
      "74      2       60      5       77          107         10          \n",
      "75      20      20      8       141         171         10          \n",
      "76      5       5       16      74          104         10          \n",
      "77      60      12      31      75          105         10          \n",
      "78      23      3       7       150         180         10          \n",
      "79      8       56      27      90          120         10          \n",
      "80      6       68      30      89          119         10          \n",
      "81      47      47      13      192         222         10          \n",
      "82      49      58      10      86          116         10          \n",
      "83      27      43      9       42          72          10          \n",
      "84      37      31      14      35          65          10          \n",
      "85      57      29      18      96          126         10          \n",
      "86      63      23      2       87          117         10          \n",
      "87      21      24      28      87          117         10          \n",
      "88      12      24      13      90          120         10          \n",
      "89      24      58      19      67          97          10          \n",
      "90      67      5       25      144         174         10          \n",
      "91      37      47      6       86          116         10          \n",
      "92      49      42      13      167         197         10          \n",
      "93      53      43      14      14          44          10          \n",
      "94      61      52      3       178         208         10          \n",
      "95      57      48      23      95          125         10          \n",
      "96      56      37      6       34          64          10          \n",
      "97      55      54      26      132         162         10          \n",
      "98      4       18      35      120         150         10          \n",
      "99      26      52      9       46          76          10          \n",
      "100     26      35      15      77          107         10          \n",
      "101     31      67      3       180         210         10          \n"
     ]
    }
   ],
   "source": [
    "with open('data/RC101.csv', newline='') as csvfile:\n",
    "    orders = csv.reader(csvfile)\n",
    "    for row in orders:\n",
    "        print(f\"{row[0]:8}{row[1]:8}{row[2]:8}{row[3]:8}{row[4]:12}{row[5]:12}{row[6]:12}\")\n",
    "        #print(\", \".join(row))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}