summaryrefslogtreecommitdiffstats
path: root/test/LAB_5_ACC_2021_1.ipynb
blob: 8eed3f8da47d24e00afddf49cc8763a9af589342 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "2VP6d4IEg-qk"
   },
   "source": [
    "# APLICACIONES EN CIENCIAS DE COMPUTACION"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "s4LxYBghg-qy"
   },
   "source": [
    "## Laboratorio 5: Algoritmo genético\n",
    "Indicaciones previas:\n",
    "- Las respuestas deben tener un buen fundamento teórico, se realizarán descuentos en el puntaje a respuestas que no contesten a lo solicitado\n",
    "- Cualquier indicio de plagio resultará en la anulación de la prueba.\n",
    "\n",
    "La tarea de este laboratorio consiste en comparar métodos en la elaboración de un algoritmo genético para la resolución de la asignación de vuelos.<br>Al final de este notebook se encuentran las preguntas que serán evaluadas en este laboratorio. \n",
    "\n",
    "\n",
    "#### Representacion de Individuo:\n",
    "\n",
    "Un objeto Individual representaa una determinada asignacion de un subconjunto de vuelos (almacenado en <b>list_of_flights</b>) a un conjunto de gates (almacenado en <b>chromosome</b>). La lista de gates disponibles que se pueden asignar a los vuelos se almacena en la variable <b>allele_pool</b>  del individuo. Ver el siguiente grafico ilustrativo:\n",
    "\n",
    "<img src=\"EjemploIndividuo.png\">\n",
    "\n",
    "**Usted deberá completar el código en las secciones indicadas con ######### COMPLETAR #########**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "3BiTFdyNhskY"
   },
   "outputs": [],
   "source": [
    "from random import seed, randint, sample, uniform, randrange\n",
    "from copy import deepcopy"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "IRVDEMS3g-q1"
   },
   "source": [
    "### Clase <b>Individual</b>\n",
    "\n",
    "Esta es una clase para definir a un individuo de la población. Cada individuo posee un cromosoma, los vuelos a asignar, todos los posibles alelos y su respectivo fitness. Además, los métodos de esta clase permiten realizar el cruzamiento (crossover) y la mutación (mutation) sobre el cromosoma del individuo."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "wD-qU6LnGM8_"
   },
   "outputs": [],
   "source": [
    "class Individual(object):\n",
    "  \"\"\" Clase que implementa el individuo y sus operadores. El cromosoma de un individuo es una lista de caracteres,\n",
    "      cada elemento de la lista es un gen cuyos alelos (caracteres) posibles se indican en allele_pool\"\"\"\n",
    "\n",
    "  def __init__(self, chromosome, list_of_flights, allele_pool):  # El constructor recibe el cromosoma y el pool de alelos posibles\n",
    "    self.chromosome = chromosome[:]\n",
    "    self.list_of_flights = list_of_flights[:]\n",
    "    self.allele_pool = allele_pool\n",
    "    self.fitness = -1  # -1 indica que el individuo no ha sido evaluado\n",
    "\n",
    "  def crossover_onepoint(self, other):\n",
    "    \"Retorna dos nuevos individuos del cruzamiento de un punto entre individuos self y other \"\n",
    "    c = randrange(len(self.chromosome))\n",
    "    ind1 = Individual(self.chromosome[:c] + other.chromosome[c:], self.list_of_flights, self.allele_pool)\n",
    "    ind2 = Individual(other.chromosome[:c] + self.chromosome[c:], self.list_of_flights, self.allele_pool)\n",
    "    return [ind1, ind2]\n",
    "  \n",
    "  def crossover_permutation(self, other):\n",
    "    new_list = list(set(self.chromosome + other.chromosome))\n",
    "    flights_to_assign = len(self.list_of_flights)\n",
    "    ind1 = Individual(sample(new_list, flights_to_assign), self.list_of_flights, self.allele_pool)\n",
    "    ind2 = Individual(sample(new_list, flights_to_assign), self.list_of_flights, self.allele_pool)\n",
    "    return [ind1, ind2]\n",
    "  \n",
    "  def crossover_uniform(self, other):\n",
    "    chromosome1 = []\n",
    "    chromosome2 = []\n",
    "    \"Retorna dos nuevos individuos del cruzamiento uniforme entre self y other \"\n",
    "    for i in range(len(self.chromosome)):\n",
    "      if uniform(0, 1) < 0.5:\n",
    "        chromosome1.append(self.chromosome[i])\n",
    "        chromosome2.append(other.chromosome[i])\n",
    "      else:\n",
    "        chromosome1.append(other.chromosome[i])\n",
    "        chromosome2.append(self.chromosome[i])\n",
    "    ind1 = Individual(chromosome1, self.list_of_flights, self.allele_pool)\n",
    "    ind2 = Individual(chromosome2, self.list_of_flights, self.allele_pool)\n",
    "    return [ind1, ind2]\n",
    "\n",
    "  def mutate_swap(self):\n",
    "    \"Escoge dos genes e intercambia sus alelos\"\n",
    "    mutated_chromosome = deepcopy(self.chromosome)\n",
    "    mutGen1 = randrange(0, len(mutated_chromosome))\n",
    "    mutGen2 = randrange(0, len(mutated_chromosome))\n",
    "    temp = mutated_chromosome[mutGen1]\n",
    "    mutated_chromosome[mutGen1] = mutated_chromosome[mutGen2]\n",
    "    mutated_chromosome[mutGen2] = temp\n",
    "    return Individual(mutated_chromosome, self.list_of_flights, self.allele_pool)\n",
    "  \n",
    "  def mutate_position(self):\n",
    "    \"Cambia aleatoriamente el alelo de un gen.\"\n",
    "    mutated_chromosome = deepcopy(self.chromosome)\n",
    "    ######### COMPLETAR #########\n",
    "    ....\n",
    "    return Individual(mutated_chromosome, self.list_of_flights, self.allele_pool)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "c8x_4uA5i9XT"
   },
   "source": [
    "### Clase <b>Gate</b>\n",
    "\n",
    "Esta es una clase abstracta para definir los lugares donde los vuelos serán asignados. Se debe hacer subclases con el fin de diferenciar los tipos de lugar donde un vuelo puede ser asignado."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "rycIj2j6i_PZ"
   },
   "outputs": [],
   "source": [
    "class Gate(object):\n",
    "  def __init__(self, identifier, x, y, z):\n",
    "    self.identifier = identifier\n",
    "    self.distance = x\n",
    "    self.potential_of_speed = y\n",
    "    self.number_of_persons_every_10m = z\n",
    "  \n",
    "  def __hash__(self):\n",
    "    return self.identifier"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "fbHPYQ4qj6fb"
   },
   "source": [
    "### Clase <b>Sleeve</b>\n",
    "\n",
    "Esta clase implementa concretamente el Gate tipo Sleeve (Manga). En este tipo de gate, los pasajeros deben realizar un recorrido a pie hasta abandonar totalmente el Gate. Se tiene en cuenta la longitud de la manga, la velocidad de los pasajeros y la cantidad de personas que pueden estar cada 10m (este valor es variable porque ya refleja el ancho de la manga, puesto que una manga más ancha permite una mayor cantidad de pasajeros)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "E9XCmO-3j472"
   },
   "outputs": [],
   "source": [
    "class Sleeve(Gate):\n",
    "  def __init__(self, identifier, length_of_sleeve, speed_of_passengers_on_sleeve, number_of_passengers_every_10m):\n",
    "    super().__init__(identifier, length_of_sleeve, speed_of_passengers_on_sleeve, number_of_passengers_every_10m)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "0T5fySg6lytA"
   },
   "source": [
    "### Clase <b>Zone</b>\n",
    "\n",
    "Esta clase implementa concretamente el Gate tipo Zone (zona). En este tipo de gate, los pasajeros son recogidos por un bus y son llevados hasta una puerta. Se tiene en cuenta la distancia de la zona a la puerta, la velocidad y capacidad del bus."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "yzwjyLG_l0nz"
   },
   "outputs": [],
   "source": [
    "class Zone(Gate):\n",
    "  def __init__(self, identifier, distance_zone_door, speed_bus, capacity_of_bus):\n",
    "    super().__init__(identifier, distance_zone_door, speed_bus, capacity_of_bus)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "ieZ9wq8amMgT"
   },
   "source": [
    "### Clase <b>Flight</b>\n",
    "\n",
    "Esta es una clase para definir a los vuelos a asignar. Cada vuelo posee una capacidad máxima, la cantidad de pasajeros, el tiempo de estacionamiento que le toma al vuelo, la longitud de las alas del avión, el tiempo de inspección al avión luego de aterrizar, el tiempo que demorarían en bajar las escaleras los pasajeros si el avión estuviera repleto, el momento de llegada al aeropuerto y el momento en que debería irse del aeropuerto."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "3Nt88YPkmLb7"
   },
   "outputs": [],
   "source": [
    "class Flight(object):\n",
    "  def __init__(self, identifier, maximum_capacity, number_of_passengers, parking_time, length_wings, inspection_time, landing_time_on_stairs, arriving_time, leaving_time):\n",
    "    self.identifier = identifier\n",
    "    self.maximum_capacity = maximum_capacity\n",
    "    self.number_of_passengers = number_of_passengers\n",
    "    self.parking_time = parking_time\n",
    "    self.length_wings = length_wings\n",
    "    self.inspection_time = inspection_time\n",
    "    self.landing_time_on_stairs = landing_time_on_stairs\n",
    "    self.arriving_time = arriving_time\n",
    "    self.leaving_time = leaving_time\n",
    "  \n",
    "  def __hash__(self):\n",
    "    return self.identifier"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "tJ5cKDEOg-q4"
   },
   "source": [
    "### Funciones utilitarias para generar los Gates y Vuelos</b>\n",
    "Estas son funciones utilitarias para generar automáticamente los Gates y Vuelos"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "k8p8en78FCcq"
   },
   "outputs": [],
   "source": [
    "def generate_list_of_gates(number_of_gates, max_length_of_sleeve=20, max_speed_of_passengers_on_sleeve=3, max_number_of_passengers_every_10m=12, max_distance_zone_door=50, max_speed_bus=15, max_capacity_of_bus=200):\n",
    "  list_of_gates = list()\n",
    "\n",
    "  for gate_identifier in range(number_of_gates):\n",
    "    gate_type = randint(0, 1)\n",
    "\n",
    "    if gate_type == 0:\n",
    "      distance = randint(1, max_length_of_sleeve)\n",
    "      potential_of_speed = randint(1, max_speed_of_passengers_on_sleeve)\n",
    "      number_of_persons_every_10m = randint(1, max_number_of_passengers_every_10m)\n",
    "\n",
    "      gate = Sleeve(gate_identifier, distance, potential_of_speed, number_of_persons_every_10m)\n",
    "    else:\n",
    "      distance = randint(1, max_distance_zone_door)\n",
    "      potential_of_speed = randint(1, max_speed_bus)\n",
    "      number_of_persons_every_10m = randint(1, max_capacity_of_bus)\n",
    "\n",
    "      gate = Zone(gate_identifier, distance, potential_of_speed, number_of_persons_every_10m)\n",
    "    \n",
    "    list_of_gates.append(gate)\n",
    "  \n",
    "  return list_of_gates\n",
    "\n",
    "def generate_list_of_flights(number_of_flights, max_maximum_capacity=100, max_number_of_passengers_factor=0.8, max_parking_time=30, max_length_wings=25, max_inspection_time=180, max_landing_time_on_stairs=60, max_arriving_time=200, max_leaving_time=1000):\n",
    "  list_of_flights = list()\n",
    "\n",
    "  max_number_of_passengers = max_number_of_passengers_factor * max_maximum_capacity\n",
    "\n",
    "  for flight_identifier in range(number_of_flights):\n",
    "    maximum_capacity = randint(max_number_of_passengers, max_maximum_capacity)\n",
    "    number_of_passengers = randint(1, max_number_of_passengers)\n",
    "    parking_time = randint(1, max_parking_time)\n",
    "    length_wings = randint(1, max_length_wings)\n",
    "    inspection_time = randint(1, max_inspection_time)\n",
    "    landing_time_on_stairs = randint(1, max_landing_time_on_stairs)\n",
    "    arriving_time = randint(1, max_arriving_time)\n",
    "    leaving_time = randint(max_arriving_time + 1, max_leaving_time)\n",
    "\n",
    "    flight = Flight(flight_identifier, maximum_capacity, number_of_passengers, parking_time, length_wings, inspection_time, landing_time_on_stairs, arriving_time, leaving_time)\n",
    "    \n",
    "    list_of_flights.append(flight)\n",
    "  \n",
    "  return list_of_flights"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "uHsytNf6oaXJ"
   },
   "source": [
    "### Funciones utilitarias para ordenar los Vuelos y Gates</b>\n",
    "Estas son funciones utilitarias para ordenar los Vuelos acorde a su deseabilidad y los Gates por su flujo personas"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "25baejsnob3d"
   },
   "outputs": [],
   "source": [
    "def process_desirability(n):\n",
    "  return n.number_of_passengers / (n.leaving_time - n.arriving_time)\n",
    "\n",
    "def process_flow(n):\n",
    "  return n.number_of_persons_every_10m * n.potential_of_speed * 10 / n.distance"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Gqws5RELpMG1"
   },
   "source": [
    "### Funciones utilitarias para el Algoritmo Genético</b>\n",
    "Estas son funciones utilitarias para realizar el Algoritmo Genético que se encargue de la asignación de vuelos"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "Glf8GsaujEF6"
   },
   "outputs": [],
   "source": [
    "# Inicialización aleatoria de la población\n",
    "def init_population(population_number, flights_to_assign, allele_pool, list_of_flights):\n",
    "  population = []\n",
    "  for i in range(population_number):\n",
    "    new_chromosome_for_individual = sample(allele_pool, flights_to_assign)\n",
    "    list_of_flights_for_individual = sample(list_of_flights, flights_to_assign)\n",
    "    population.append( Individual(new_chromosome_for_individual, list_of_flights_for_individual, allele_pool) )\n",
    "  return population\n",
    "\n",
    "# Funcion de fitness: evalua un individuo dada su lista de vuelos (solution_flights) y los gates asignados (solution_gates)\n",
    "# El fitness representa la suma total de ratios de numeros de pasajeros desembarcados por unidad de tiempo en cada gate asignado  \n",
    "def fitness(solution_flights, solution_gates):\n",
    "  grace_time = 5/100\n",
    "\n",
    "  cumulative_time = 0\n",
    "  for flight, gate in zip(solution_flights, solution_gates):\n",
    "    number_of_passengers = flight.number_of_passengers\n",
    "    if isinstance(gate, Sleeve):\n",
    "      disembarkation_time_of_passengers = ( (number_of_passengers * (gate.distance + flight.length_wings) / process_flow(gate)) + flight.parking_time + flight.inspection_time ) * (1 + grace_time)\n",
    "    else:\n",
    "      disembarkation_time_of_passengers = ( (number_of_passengers * gate.distance / process_flow(gate)) + flight.parking_time + (flight.landing_time_on_stairs * number_of_passengers / flight.maximum_capacity) + flight.inspection_time ) * (1 + grace_time)\n",
    "    cumulative_time += number_of_passengers / disembarkation_time_of_passengers\n",
    "  return cumulative_time\n",
    "\n",
    "# Evaluar la población con la función fitness\n",
    "def evaluate_population(population, fitness_fn):\n",
    "  \"\"\" Evalua una poblacion de individuos con la funcion de fitness pasada \"\"\"\n",
    "  population_size = len(population)\n",
    "  for i in range(population_size):\n",
    "    if population[i].fitness == -1:    # Evalúa sólo si el individuo no esta evaluado\n",
    "      population[i].fitness = fitness_fn(population[i].list_of_flights, population[i].chromosome)\n",
    "\n",
    "# Selección de parientes por el método roulette\n",
    "def select_parents_roulette(population):\n",
    "  population_size = len(population)\n",
    "  \n",
    "  sumfitness = sum([indiv.fitness for indiv in population])\n",
    "  pickfitness = uniform(0, sumfitness)\n",
    "  cumfitness = 0\n",
    "  for i in range(population_size):\n",
    "    cumfitness += population[i].fitness\n",
    "    if cumfitness > pickfitness: \n",
    "      iParent1 = i\n",
    "      break\n",
    "  \n",
    "  sumfitness = sumfitness - population[iParent1].fitness\n",
    "  pickfitness = uniform(0, sumfitness)\n",
    "  cumfitness = 0\n",
    "  for i in range(population_size):\n",
    "    if i == iParent1:\n",
    "      continue\n",
    "    cumfitness += population[i].fitness\n",
    "    if cumfitness > pickfitness: \n",
    "      iParent2 = i\n",
    "      break\n",
    "  return (population[iParent1], population[iParent2])\n",
    "\n",
    "# Selección de parientes por el método tournament\n",
    "def select_parents_tournament(population, percentage_size):\n",
    "  population_size = len(population)\n",
    "  tournament_size = int(percentage_size*population_size/100)\n",
    "  \n",
    "  # Escoge el primer padre\n",
    "  tournament_pool = sample(population, tournament_size)\n",
    "  max_fitness = -1\n",
    "  for i in range(len(tournament_pool)):  # recorre los individuos que participan en el torneo buscando el mejor individuo\n",
    "    if tournament_pool[i].fitness > max_fitness:\n",
    "      max_fitness = tournament_pool[i].fitness\n",
    "      iParent1 = i\n",
    "  \n",
    "  # Escoge el segundo padre\n",
    "  ######### COMPLETAR #########\n",
    "  ....\n",
    "  return (population[iParent1], population[iParent2])\n",
    "\n",
    "# Selección de la nueva población\n",
    "def select_survivors(population, offspring_population, numsurvivors):\n",
    "  next_population = []\n",
    "  population.extend(offspring_population) # Une las dos poblaciones\n",
    "  survivors = sorted(population, key=lambda x: x.fitness, reverse=True)[:numsurvivors]\n",
    "  next_population.extend(survivors)\n",
    "  return next_population\n",
    "\n",
    "def genetic_algorithm(list_of_flights, list_of_gates, num_individuals, flights_to_assign, fitness_fn, n_generations, selection_fn=\"roulette\", crossover=\"onepoint\", mutation=\"position\", percentage_size=5, p_mut=0.05):\n",
    "  seed(0)\n",
    "\n",
    "  allele_pool = list_of_gates\n",
    "\n",
    "  #Inicializa una poblacion inicial de forma aleatoria\n",
    "  population = init_population(num_individuals, flights_to_assign, allele_pool, list_of_flights)\n",
    "\n",
    "  population_size = len(population)\n",
    "  ######### COMPLETAR #########\n",
    "  ....\n",
    "  \n",
    "  for _ in range(n_generations):  # Por cada generacion\n",
    "    \n",
    "     ## Selecciona las parejas de padres para cruzamiento\n",
    "    mating_pool = []\n",
    "    for i in range(int(population_size/2)):\n",
    "      if selection_fn == \"roulette\":\n",
    "        ######### COMPLETAR #########\n",
    "        ....\n",
    "      elif selection_fn == \"tournament\":\n",
    "        mating_pool.append(select_parents_tournament(population, percentage_size))\n",
    "\n",
    "    ## Crea la poblacion descendencia cruzando las parejas del mating pool    \n",
    "    offspring_population = []\n",
    "    for i in range(len(mating_pool)):\n",
    "      if crossover == \"onepoint\":\n",
    "        offspring_population.extend( mating_pool[i][0].crossover_onepoint(mating_pool[i][1]) )\n",
    "      elif crossover == \"permutation\":\n",
    "        ######### COMPLETAR #########\n",
    "        ....\n",
    "      elif crossover == \"uniform\":\n",
    "        ######### COMPLETAR #########\n",
    "        ....\n",
    "    \n",
    "    ## Aplica el operador de mutacion con probabilidad p_mut en cada hijo generado\n",
    "    for i in range(len(offspring_population)):\n",
    "      if uniform(0, 1) < p_mut: \n",
    "        if mutation == \"swap\":\n",
    "          ######### COMPLETAR #########\n",
    "          ....\n",
    "        elif mutation == \"position\":\n",
    "          offspring_population[i] = offspring_population[i].mutate_position()\n",
    "\n",
    "    ######### COMPLETAR #########\n",
    "    ....\n",
    "  \n",
    "  best = sorted(population, key=lambda x: x.fitness, reverse=True)[0]\n",
    "\n",
    "  return best"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "pc90jPukpbwN"
   },
   "source": [
    "### Funciones utilitarias para manejar la solución del Algoritmo Genético</b>\n",
    "Esta es una función utilitarias que permite mostrar la configuración usada en el Algoritmo Genético y la asignación de Vuelos a Gates encontrada en la solución"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "yb6LUKwKpXDJ"
   },
   "outputs": [],
   "source": [
    "def make_solution_report(solution, selection_fn, crossover, mutation):\n",
    "  print(\"Selection: {} - Crossover: {} - Mutation: {} - Fitness: {}\".format(selection_fn, crossover, mutation, solution.fitness), flush=True)\n",
    "  print(\" - \".join([\"Flight {} in {} {}\".format(flight.identifier, \"Zone\" if isinstance(gate, Zone) == True else \"Sleeve\", gate.identifier) for flight, gate in zip(solution.list_of_flights, solution.chromosome)]) + \"\\n\", flush=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "qYjVdTfeg-q6"
   },
   "source": [
    "## <b>Algoritmo Genético</b> "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "1m0pxINHqQ2m"
   },
   "source": [
    "### <b>Generación de Gates y Vuelos</b> \n",
    "\n",
    "Implementación para generar los Gates y Vuelos, **sin filtrar los primeros N vuelos más deseables que pueden ser asignados, dejando el trabajo de selección de vuelos al Algoritmo Genético**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "DaqP5VHngUVg"
   },
   "outputs": [],
   "source": [
    "seed(0)\n",
    "\n",
    "number_of_gates = 7\n",
    "number_of_flights = 20\n",
    "\n",
    "list_of_gates = generate_list_of_gates(number_of_gates)\n",
    "list_of_flights = generate_list_of_flights(number_of_flights)\n",
    "\n",
    "number_of_gates = len(list_of_gates)\n",
    "number_of_flights = len(list_of_flights)\n",
    "\n",
    "flights_to_assign = number_of_flights if number_of_flights <= number_of_gates\telse number_of_gates\n",
    "  \n",
    "list_of_flights = sorted(list_of_flights, key=process_desirability, reverse=True)\n",
    "list_of_gates = sorted(list_of_gates, key=process_flow, reverse=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "PmmLPnvYrP6v"
   },
   "source": [
    "### <b>Experimentación con el Algoritmo Genético</b> "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "CnfOnMijrP6x"
   },
   "outputs": [],
   "source": [
    "num_individuals = 100\n",
    "\n",
    "fitness_fn = fitness\n",
    "n_generations = 20\n",
    "\n",
    "best_fitness = 0\n",
    "\n",
    "selection_fn = \"roulette\"\n",
    "crossover = \"onepoint\"\n",
    "mutation = \"position\"\n",
    "\n",
    "solution = genetic_algorithm(list_of_flights, list_of_gates, num_individuals, flights_to_assign, fitness_fn, n_generations, selection_fn, crossover, mutation)\n",
    "\n",
    "make_solution_report(solution, selection_fn, crossover, mutation)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "wDZA5IJ5gUVh"
   },
   "outputs": [],
   "source": [
    "num_individuals = 100\n",
    "\n",
    "fitness_fn = fitness\n",
    "n_generations = 20\n",
    "\n",
    "best_fitness = 0\n",
    "\n",
    "######### COMPLETAR #########\n",
    "for selection_fn in [\"roulette\", \"tournament\"]:  # por cada operador de seleccion\n",
    "  for crossover in [....]:    # por cada operador de cruzamiento\n",
    "    for mutation in [....]:   # por cada operador de mutacion\n",
    "      ....\n",
    "\n",
    "print(\"Best Fitness: {}\".format(best_fitness))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "JnfUrB-aqegj"
   },
   "source": [
    "# Preguntas:"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "yZHjKv4Lyfa2"
   },
   "source": [
    "**1.** Completar el código\n",
    "\n",
    "**(4 Puntos)**"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "xCdMlpt1vpJj"
   },
   "source": [
    "**2.** Para la \"Generación de Gates y Vuelos\", experimentar con el algoritmo genético usando las siguientes configuraciones:\n",
    "\n",
    "- selection_fn: \"roulette\", \"tournament\"\n",
    "- crossover: \"onepoint\", \"uniform\", \"permutation\"\n",
    "- mutation: \"position\", \"swap\"\n",
    "\n",
    "En total son 12 combinaciones a realizar. En cada configuración se debe usar la función \"make_solution_report\" para obtener los resultados. La lista de Vuelos y Gates sólo se generan 1 vez, a partir de las cuales se experimenta con cada configuración del Algoritmo Genético.\n",
    "\n",
    "**No modificar los valores de \"percentage_size\" y \"p_mut\" al ejecutar el algoritmo genético**\n",
    "\n",
    "**Se debe mostrar el código respectivo y la solución generada en cada configuración o se considerará como inválido. Para este fin, puede agregar celdas a su gusto.**\n",
    "\n",
    "**(5 Puntos, cada 3 configuraciones realizadas equivale a 1 punto)**"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "iobk9RW2vtcr"
   },
   "source": [
    "**3.** Para la \"Generación de Gates y Vuelos no restringida\", seleccionar las soluciones con el mejor fitness.\n",
    "\n",
    "**En total debería tener 5 configuraciones con el mejor fitness (contando todos los decimales devueltos en la impresión de make_solution_report**\n",
    "\n",
    "**(5 Puntos, cada configuración explicada equivale a 1 punto)**"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "h1-xDv92SYnF"
   },
   "source": [
    "**4.** Por cada solución (de la pregunta 3), explicar teóricamente porque dicha configuración (\"selection_fn\", \"crossover\" y \"mutation\") obtiene el mejor fitness. Se debe tener en cuenta que en este caso el Algoritmo Genético se encargó de elegir los vuelos a ser asignados.\n",
    "\n",
    "**Es necesario que indique en que parte del código el Algoritmo Genético eligió los vuelos, o las justificaciones teóricas no se considerarán válidas.**\n",
    "\n",
    "**Se debe explicar teóricamente cada configuración por separado, o se considerará como inválido.**\n",
    "\n",
    "**En total debería tener 5 configuraciones con el mejor fitness (contando todos los decimales devueltos en la impresión de make_solution_report**\n",
    "\n",
    "**(6 Puntos, indicar la parte del código el Algoritmo Genético eligió los vuelos equivale 1 punto, y cada configuración explicada equivale a 1 punto)**"
   ]
  }
 ],
 "metadata": {
  "colab": {
   "collapsed_sections": [],
   "name": "LAB_5_ACC_2021_1.ipynb",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}