summaryrefslogtreecommitdiffstats
path: root/test/GA.ipynb
blob: bab966d5554324bd9f0423f12223c5151ca43fa2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "2fd45b3a-9a24-4782-812c-08223edb750e",
   "metadata": {},
   "source": [
    "# Prueba del algoritmo genetico"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f6b4829a-9001-410c-b20c-01c65c777d8a",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2c3c85e0-a90c-4fda-86f7-778d7328c74d",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "511ff788-0d1a-4ac7-9575-de182d236574",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "078280b5-70ef-4691-8798-a686d85d188c",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b3ad92de-b2ed-4f21-a696-1fa2981f89dc",
   "metadata": {},
   "outputs": [],
   "source": [
    "def genetic_algorithm(population, fitness_fn, ngen=100, pmut=0.1):\n",
    "    \"Algoritmo Genetico \"\n",
    "    \n",
    "    popsize = len(population)\n",
    "    evaluate_population(population, fitness_fn)  # evalua la poblacion inicial\n",
    "    ibest = sorted(range(len(population)), key=lambda i: population[i].fitness, reverse=True)[:1]\n",
    "    bestfitness = [population[ibest[0]].fitness]\n",
    "    print(\"Poblacion inicial, best_fitness = {}\".format(population[ibest[0]].fitness))\n",
    "    \n",
    "    for g in range(ngen):   # Por cada generacion\n",
    "        \n",
    "        ## Selecciona las parejas de padres para cruzamiento \n",
    "        mating_pool = []\n",
    "        for i in range(int(popsize/2)): mating_pool.append(select_parents_roulette(population)) \n",
    "        \n",
    "        ## Crea la poblacion descendencia cruzando las parejas del mating pool con Recombinación de 1 punto\n",
    "        offspring_population = []\n",
    "        for i in range(len(mating_pool)): \n",
    "            #offspring_population.extend( mating_pool[i][0].crossover_onepoint(mating_pool[i][1]) )\n",
    "            offspring_population.extend( mating_pool[i][0].crossover_uniform(mating_pool[i][1]) )\n",
    "\n",
    "        ## Aplica el operador de mutacion con probabilidad pmut en cada hijo generado\n",
    "        for i in range(len(offspring_population)):\n",
    "            if random.uniform(0, 1) < pmut: \n",
    "                offspring_population[i] = offspring_population[i].mutate_position()\n",
    "        \n",
    "        ## Evalua la poblacion descendencia\n",
    "        evaluate_population(offspring_population, fitness_fn)  # evalua la poblacion inicial\n",
    "        \n",
    "        ## Selecciona popsize individuos para la sgte. generación de la union de la pob. actual y  pob. descendencia\n",
    "        population = select_survivors(population, offspring_population, popsize)\n",
    "\n",
    "        ## Almacena la historia del fitness del mejor individuo\n",
    "        ibest = sorted(range(len(population)), key=lambda i: population[i].fitness, reverse=True)[:1]\n",
    "        bestfitness.append(population[ibest[0]].fitness)\n",
    "        print(\"generacion {}, best_fitness = {}\".format(g, population[ibest[0]].fitness))\n",
    "    \n",
    "    return population[ibest[0]], bestfitness  "
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}