{ "cells": [ { "cell_type": "markdown", "id": "2fd45b3a-9a24-4782-812c-08223edb750e", "metadata": {}, "source": [ "# Prueba del algoritmo genetico" ] }, { "cell_type": "code", "execution_count": null, "id": "f6b4829a-9001-410c-b20c-01c65c777d8a", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "2c3c85e0-a90c-4fda-86f7-778d7328c74d", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "511ff788-0d1a-4ac7-9575-de182d236574", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "078280b5-70ef-4691-8798-a686d85d188c", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "b3ad92de-b2ed-4f21-a696-1fa2981f89dc", "metadata": {}, "outputs": [], "source": [ "def genetic_algorithm(population, fitness_fn, ngen=100, pmut=0.1):\n", " \"Algoritmo Genetico \"\n", " \n", " popsize = len(population)\n", " evaluate_population(population, fitness_fn) # evalua la poblacion inicial\n", " ibest = sorted(range(len(population)), key=lambda i: population[i].fitness, reverse=True)[:1]\n", " bestfitness = [population[ibest[0]].fitness]\n", " print(\"Poblacion inicial, best_fitness = {}\".format(population[ibest[0]].fitness))\n", " \n", " for g in range(ngen): # Por cada generacion\n", " \n", " ## Selecciona las parejas de padres para cruzamiento \n", " mating_pool = []\n", " for i in range(int(popsize/2)): mating_pool.append(select_parents_roulette(population)) \n", " \n", " ## Crea la poblacion descendencia cruzando las parejas del mating pool con Recombinación de 1 punto\n", " offspring_population = []\n", " for i in range(len(mating_pool)): \n", " #offspring_population.extend( mating_pool[i][0].crossover_onepoint(mating_pool[i][1]) )\n", " offspring_population.extend( mating_pool[i][0].crossover_uniform(mating_pool[i][1]) )\n", "\n", " ## Aplica el operador de mutacion con probabilidad pmut en cada hijo generado\n", " for i in range(len(offspring_population)):\n", " if random.uniform(0, 1) < pmut: \n", " offspring_population[i] = offspring_population[i].mutate_position()\n", " \n", " ## Evalua la poblacion descendencia\n", " evaluate_population(offspring_population, fitness_fn) # evalua la poblacion inicial\n", " \n", " ## Selecciona popsize individuos para la sgte. generación de la union de la pob. actual y pob. descendencia\n", " population = select_survivors(population, offspring_population, popsize)\n", "\n", " ## Almacena la historia del fitness del mejor individuo\n", " ibest = sorted(range(len(population)), key=lambda i: population[i].fitness, reverse=True)[:1]\n", " bestfitness.append(population[ibest[0]].fitness)\n", " print(\"generacion {}, best_fitness = {}\".format(g, population[ibest[0]].fitness))\n", " \n", " return population[ibest[0]], bestfitness " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.2" } }, "nbformat": 4, "nbformat_minor": 5 }