diff options
| author | Mitsuo Tokumori <[email protected]> | 2022-04-22 00:14:07 -0500 |
|---|---|---|
| committer | Mitsuo Tokumori <[email protected]> | 2022-04-22 00:14:07 -0500 |
| commit | 48b9f5cfbb91e555d88e094928c3f66000df338a (patch) | |
| tree | 6b5a26779d6a597a849f273b1dd95e9f0a415e32 /test | |
| parent | 67fe87fe17bb5e04843b743ab0a9d79e826b3399 (diff) | |
| download | DP1_project-48b9f5cfbb91e555d88e094928c3f66000df338a.tar.gz DP1_project-48b9f5cfbb91e555d88e094928c3f66000df338a.tar.bz2 DP1_project-48b9f5cfbb91e555d88e094928c3f66000df338a.zip | |
Remove jupyter cells output
Diffstat (limited to 'test')
| -rw-r--r-- | test/TSP.ipynb | 87 |
1 files changed, 15 insertions, 72 deletions
diff --git a/test/TSP.ipynb b/test/TSP.ipynb index effca11..476619b 100644 --- a/test/TSP.ipynb +++ b/test/TSP.ipynb @@ -42,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "eda106bc-2411-4ace-acf0-d2b66dc2d127", "metadata": {}, "outputs": [], @@ -75,19 +75,10 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "4b3dcfaf-ab6b-42b7-9218-e58ea6828605", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "best_x: [1.01075314 0.99002837 0.00997163] \n", - " best_y: [2.00187751]\n" - ] - } - ], + "outputs": [], "source": [ "from sko.DE import DE\n", "\n", @@ -116,7 +107,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "03283268-a9af-4e26-a673-4c8225bf5fcb", "metadata": {}, "outputs": [], @@ -138,19 +129,10 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "id": "24da5ddc-04fe-4536-b5b9-48dca9a6118c", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "best_x: [-2.08616263e-07 -8.94069698e-08] \n", - " best_y: [0.]\n" - ] - } - ], + "outputs": [], "source": [ "from sko.GA import GA\n", "\n", @@ -161,23 +143,10 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": null, "id": "2e4903dc-6eff-4087-a986-1f6cf3470645", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkCklEQVR4nO3df7QcZZ3n8fe3769EfhhIsoIECLiMM8zAErhGohz2rugYmDmJGncNuifqiRtU2JHx7DAwnoOKZ88M7BxlXFnJVRiJo6ASxMjigoPcg2MukRvDrwTBCAhBMCEKnNExyb357h9PVbq6uvp29U33ra6bz+ucPrd+PF31raqnv7f6qeqnzN0REZHyqxQdgIiItIcSuojIDKGELiIyQyihi4jMEEroIiIzRG9RK543b54vXLiwqNWLiJTS5s2bX3T3+VnzCkvoCxcuZGxsrKjVi4iUkpn9otE8NbmIiMwQhZ2hd8ToKIyMwNAQLFlSnbZuHbzwAhxzDKxaVZ2Xfu+6dWF40SLYvTt7OVC7jOQ6H3kE1q+HFSvCvHh4zZr6shCG586tXVeeeLO2M++2TraPktvWaB3JZcydC1u21O+TVvZrnu3KO78Vw8PV43PaaY2PRbvWlzTZctNxNatzjeKKl3PGGTBnzsFtQ7reZsWU57159mmjz1P6MzSVY9VqPc+7Tc3KtrK/Dpa7F/I666yzvG02bnT/8Ifd+/vde3rcZ892X7s2TOvrc4fqa2AglE+/v7+/tpyZe29vWM7GjeF98bz+/jBt48awrp6e+vUkX/Ey4rIDA2EZlUqYX6lUY06uJyve5HJmz67Oy9qGPO/N2ra1a7PXkVxGHHt6nzTbr/G2ZpVttM4881uxdm1tTH192ceiXevLux3puHp7J69zjeJKL8ds6tuQrrfJep51zCfb1mb7NFk+ue3pz9BUjlWr9TzvNjXb/qy8cZCAMW+QV8vf5DI6CuedB2vXwt69MDEBe/bAJZeEafv21Zbfuzf8d00aGakv5w7j42E569aF98X27QvvGRmprjP9/qT162vL7t0byu/fH+bv3x+mrV9fu56seNPLiedlbUOe98bTktsWx5FeR3IZcezpfZKUFVO8rVllG60zz/xWrF9fH3ujY9GO9SVNth3puMbHa2NM17lGcaWX4z71bciqt+mY8r632T5Nlk9ue7xN6brXyrFqtZ7n3aY8259cZ7vqUQPlT+jxTov7pDGDSiXs8Kx+avr7q18dY0ND0NeXvfyJier7Yn194T1DQ2F6T0/j90P4ypgs298fylei3V+phGkrVtSuJyve9HLieVnbkOe98bTktsVxpNeRXEYlVXXifZKUFVO8rVllG60zz/xWxE1iydgbHYt2rC9psu1Ix9WbaBHNqnON4kovp9E+n0q8yeOZdcwne2+zfZos35tqDU5+hqZyrFqt53m3Kc/2J9fZrnrUgHlBnXMNDg56W+5yic/Q9+4NleCDHwxttZdeGqb19MAFF4SyedvQjzwSPve5kMwHBuCee8J0taHXLkNt6FOjNnS1oR8EM9vs7oOZ80qZ0PNUkoP9MHbqwywichBmVkIfHg7t2smzZyVcETlETJbQy9WGPjoKH/1o9SLWnj0dv8ggIlIW5Uro69ZVL1JCuADa4YsMIiJlUa6EnvbmN6u5RUQkUq6EvmpV7W1T998fmmFERKRkCX3JEli9OjS1QGh+URu6iAiQM6Gb2VIze9zMtpvZ5Q3K/Bcz22ZmW83s6+0NM2HVKpg1q/0/+BARKbmmnXOZWQ9wHfA2YAfwgJltcPdtiTKnAFcAb3b335jZv+tUwCxZEm5VjG/WFxERIN8Z+mJgu7s/6e57gVuA5aky/w24zt1/A+DuO9sbZoabboIvfSn8SlTt6CIiuRL6ccCzifEd0bSkPwD+wMx+ZGb3m9nSdgWYaWQk3IMed8SldnQRkbb1h94LnAIMAQuA+8zsNHd/KVnIzNYAawBOOOGEqa9t7tzaHtfmzp36skREZog8Z+jPAccnxhdE05J2ABvcfZ+7PwU8QUjwNdx92N0H3X1w/vzMR+Lls3t3bY9ru3dPfVkiIjNEnoT+AHCKmZ1kZv3ASmBDqszthLNzzGweoQnmyfaFmTJ3brjLpVIJ/bnoThcRkeYJ3d3HgUuAu4DHgG+6+1Yzu8rMlkXF7gJ2m9k24F7gr9y9M6fNw8Nw8cWhA/xKBa69Vr8WFREhZxu6u98J3JmadmVi2IGPR6/OGR0NPS3GTzOZmFBzi4hIpFy/FE0/0sxdF0RFRCLlSuhZyTt+Yo6IyCGuXAldzSsiIg2VK6GnHzrc2xv6dhERkZIldAjt5hDucLnuOt3hIiISKVdCX7eueofL/v1qPxcRSShXQhcRkYbKldBXrQq/DDULf9V+LiJyQLs655oeS5bAvfeG+9GHhtR+LiKSUK6EDiGJK5GLiNQpV5MLhL5c3v728FdERA4o1xn68DBcdFEYvvvu8HfNmuLiERHpIuU6Q1+/fvJxEZFDWLkS+ooVk4+LiBzCytXkEjevrF8fkrmaW0REDihXQgc47bTQSddppxUdiYhIVylXQh8dhfPOgz17qn256CxdRATI2YZuZkvN7HEz225ml09SboWZuZkNti/EhJGRkMz37w99ulxySUjyIiLSPKGbWQ9wHXA+cCpwoZmdmlHuCOBjwKZ2B3nA0FA4M49NTIQkLyIiuc7QFwPb3f1Jd98L3AIszyj3GeBq4PdtjK/WkiWhmaWvLyT2gYGQ5EVEJFcb+nHAs4nxHcAbkwXM7EzgeHf/v2b2V40WZGZrgDUAJ5xwQuvRQv2dLuoGQEQEaMNFUTOrAJ8FPtCsrLsPA8MAg4ODPqUVDg/DxReHdvQf/jDc7aKkLiKSq8nlOeD4xPiCaFrsCOBPgBEzexo4G9jQkQujo6PhQuj4eEjoe/aoDV1EJJInoT8AnGJmJ5lZP7AS2BDPdPeX3X2euy9094XA/cAydx9re7QjI+FCaKxSURu6iEikaUJ393HgEuAu4DHgm+6+1cyuMrNlnQ6wRvyQaDPo6dEzRUVEEnK1obv7ncCdqWlXNig7dPBhTWJ8vPqgaP1aVETkgHJ1znXNNdUml4kJuLzhb5xERA455Urov/xl7fi//It+KSoiEilXQk9fAHXXXS4iIpFyJfQnnqgdN9NdLiIikXIl9HSTywkn6C4XEZFIuRL66tW14zt2qA1dRCRSroS+Zg284x3VcbWhi4gcUK6EDnDZZTB7dvhhUX+/2tBFJJ/RUfjbv53R3+rL9cQiCG3m99wTzsyHhtSGLiLNxU8727s3nAjec8+MzB3lO0MfHoZPfQrmzp2RB0REOmBkJCTziYnwd4Y21ZbrDH14GC66KAzffXf4q2eKikgzQ0PhzDw+Q5+hTbXlOkNfv752/IYbiolDRMolbqr9zGdmbHMLlC2hr1hRO75ly4y+wCEibbRkCVxxxYxN5lC2hJ6+bXH//hnbFiYi0qpyJXTQbYsiIg2U66Io6LZFEZEGcp2hm9lSM3vczLabWV0n5Gb2cTPbZmYPm9k9ZnZi+0MVEZHJNE3oZtYDXAecD5wKXGhmp6aKbQEG3f104FbgmnYHesDwMJxzDvzN38Cb3gR//dcdW5WISJnkOUNfDGx39yfdfS9wC7A8WcDd73X330Wj9wML2htmZHQUPvKRcDE0ds01IcmLiBzi8iT044BnE+M7ommNrAa+lzXDzNaY2ZiZje3atSt/lLGRkdpkHkvfny4icghq610uZvZfgUHgf2XNd/dhdx9098H58+e3voKhIahkhJy+P11E5BCUJ6E/BxyfGF8QTathZm8FPgEsc/c97QkvZckS+OIXq0ndLNzGqJ//i4jkum3xAeAUMzuJkMhXAu9NFjCzRcBaYKm772x7lEmnnQbLloWnF61erWQuIhJpmtDdfdzMLgHuAnqAG919q5ldBYy5+wZCE8vhwLfMDOAZd1/W9mhHR0Ozy969Yfyhh0KC173oIiL5fljk7ncCd6amXZkYfmub48o2MgL79lXH9+wJ05TQRURK9tP/oaHwk/+kuXMLCUVEpNuUK6EvWQIf+lC4GArh4uju3cXGJCLSJcqV0AFWrYJZs8KZ+sCAOucSEYmUL6EDvOENoanlDW8oOhIRka5Rrt4WR0fh3HNhfDyM79wZxu+7TxdGReSQV64z9JGRajKPjY/rIRciIpQtob/0UmvTRUQOIeVK6I3OxL/73WkNQ0SkG5Uroc+alT19Z2d7GxARKYNyJfSjj86entUDo4jIIaZcd7kcc0z29A9+sH7a6Gjz545OVmZ4OPSzvmJF8w7ARkdh3bowvGpVWFae9TeLCcJyX3ghDB9zTHX5UxFv0xlnwP33w5NPwnvfC1df3fw98X5IxvfII3DtteGHXh/7WP1+Su+DeHzuXNiyBbZtg9//PnSydtpp1Xm7d9fut+FhuOEGeO1rQ++a8bLifRPvl3h/Qe1+yjoWWccsr0bHNh3TokVhO+N1QO32Z8UZx3TkkfDgg9WuofPUxUb7O65Lk9XH5LHZvTtclxoZqd3neT4T6eU02tZYK5+z5DqaHef09qbjSteF9DwID89JdgLYak5JxzAd3L2Q11lnneUtW7vWHWpfCxbUl9u40X32bPeenvB348bWyqTXs3Zt45g2bnTv76+WHRgI5Zutv9Gy4vf197v39dVv78BA/uUlZe27+HXZZfnec9ll1fh6e+uXk9xP6f0b75NKJTuGvr7qvEqlut/SMfT1hWnJfR5PT+6v/v7w/qzjvHFj2I/psq0eo+SxTS8za/v6++u3Pz6ezd7frC422t9xXRoYaFwf4/dOdmwuu6x5HOnlmE1ed1v5nCXXkXXs0p+d5Pam616yfqVjrlTC+3t6Gtf9PDllYKC6nFZyQA6EThEz82q52iri//RJvRlfMkZGQo+MExPhb9bF1MnKpJ+ANNkTkdIdhu3dG8o3W3+jZcXv27evdrnJ5U/lNs3JtuG22/K957bbqvGlbx9Nl0/v33ifZD1xCsK2xvP2769uZzqGffvCtPS+Se+vffvC+7OOczwtXTaPRvUmvcys7UtuY6xRTI00Oo6N9ndclyarj/F7Jzs26TqSFUd6Oe618w/mc5ZeRzK29HFOb2+67iXrVzrm/fvD+ycmatebrPt5c0q8nKl+ZqegXAk9S9aj7IaGoL8/dA/Q35/dPcBkZdJPQJrsiUhDQ9DXVx3v7w/lm62/0bLi9/X11S43ufypdHcw2Ta861353vOud1Xjy/pHmiyf3r/xPml0vaOvrzqvUqluZzqGvr4wLb1v0vurry+8P+s4x9PSZfNoVG/Sy8zavuQ2xhrF1Eij49hof8d1abL6GL93smOTriNZcaSXE/e5FDuYz1l6HcnY0sc5vb3pupesX+mYK5Xw/nQngMm6nzenxMuZ6md2CszT/0WnyeDgoI+NjbX2puFhuOii+unvex/80z/VTlMbej21oasNXW3opW9DN7PN7j6YOa9UCf2d74Tbb6+ffvTR6nVRRA4JkyX0cjW53Hdf9vTzz5/eOEREulCu2xbNbCnwD4RH0H3Z3f8uNX8AWAecBewG3uPuT7c3VOCVV7Knp5tbYllfQdNf05Nf67OaFl56KXz1PeMMmDMn/9enZl/zFy2q/+qX5/3paZN9ZW30FTz+Oj1rVvh2E++LRx6pLmuyJpBOaeV4TbVJrdFX7+R+jLc9q+ki3cTSKIZmxw8aN/kcTHNhnmaHZvE2im10dGrNEFOJP/7ctdIU02hbsppTkuvO+gzl/fxNNa4OfZaaNrmYWQ/wBPA2YAfhodEXuvu2RJmPAqe7+4fNbCXwTnd/z2TLnVKTS6VSf+VcRKSsppDPDrbJZTGw3d2fdPe9wC3A8lSZ5cBN0fCtwHlm6UvcbaBkLiIzSZvTZJ6EfhzwbGJ8RzQts4y7jwMvA3PTCzKzNWY2ZmZju7JuNxQRkSmb1oui7j7s7oPuPjh//vzWF7B4cfuDEhGZIfIk9OeA4xPjC6JpmWXMrBd4NeHiaHtt2qSkLiIzR5ubkfPc5fIAcIqZnURI3CuB96bKbADeD4wC7wZ+4J26wX3Tpo4sVkSk7HL9sMjMLgCuJdy2eKO7/08zu4rQScwGM5sFfBVYBPwaWOnuTzZZ5i7gF1OMex7w4hTf22ndGpviao3iao3ias3BxHWiu2e2WRf2S9GDYWZjjW7bKVq3xqa4WqO4WqO4WtOpuMr1S1EREWlICV1EZIYoa0IfLjqASXRrbIqrNYqrNYqrNR2Jq5Rt6CIiUq+sZ+giIpKihC4iMkOULqGb2VIze9zMtpvZ5dO87hvNbKeZPZqYdrSZfd/Mfhb9PSqabmb2+SjOh83szA7GdbyZ3Wtm28xsq5l9rBtiM7NZZvZjM3soiuvT0fSTzGxTtP5vmFl/NH0gGt8ezV/YibgS8fWY2RYzu6Nb4jKzp83sETN70MzGomndUMfmmNmtZvZTM3vMzJYUHZeZvT7aT/HrFTO7tOi4onX9ZVTnHzWzm6PPQufrV6OnR3fji/DDpp8DJwP9wEPAqdO4/nOBM4FHE9OuAS6Phi8Hro6GLwC+BxhwNrCpg3EdC5wZDR9B6O741KJji5Z/eDTcB2yK1vdNwo/PAK4HPhINfxS4PhpeCXyjw8fz48DXgTui8cLjAp4G5qWmdUMduwn4UDTcD8zphrgS8fUALwAnFh0XobPCp4DZiXr1gemoXx3dyTk2/EZgJ4kE2aT8EuCuxPgVwBWJ8Qngwei1oUMxL6Q2oT8OHBsNHws8Hg2vJfQbX1duGvbrdwj913dNbMCrgJ8AbyT8Qq43fUyBu4Al0XBvVM46FM8C4B7gLcAd0Ye8G+J6mvqEXuhxJPTN9FR6m4uOKxXLnwI/6oa4qPY+e3RUX+4A3j4d9avoJpevAEtbKN+sK99/c/czoteyNsSXx2vc/flo+AXgNdFwnm6H2y76uraIcDZceGxRs8aDhH/c3yd8w3rJQzfL6XXn6oa5Ta4FLgP2R+NzuyQuB+42s81mFj+qp+jjeBKwC/jHqInqy2Z2WBfElbQSuDkaLjQud38O+HvgGeB5Qn3ZzDTUr0ITurvfR+j75QAze52Z/b+oQv/QzP6woPBa5uFfbGH3gZrZ4cB64FJ3r3leX1GxufuEu59BOCNeDBR+PM3sz4Gd7r656FgynOPuZwLnAxeb2bnJmQUdx15CU+MX3X0R8FtCU0bRcQEQtUUvA76VnldEXFGb/XLCP8LXAofR2onrlBV9hp5lGPjv7n4W8D+A/5OY16wr31kWHqBxv5m9o+ORBr8ys2MBor87o+l5uh1uGzPrIyTzr7n7bd0UG4C7vwTcS/iqOcdCN8vpdU9PN8zwZmCZmT1NeALXWwjPzC06rvjsDnffCXyb8E+w6OO4A9jh7nFXp7cSEnzRccXOB37i7r+KxouO663AU+6+y933AbcR6lzH61dXJfToDPNNwLeir+lrCW1gmNm7gC8B/8nCXS5bgSuBP0ss4kQPHd68F7jWzF43DWHHXQcT/f1OYvqq6Mr62cDLia+BbWVmBtwAPObun+2W2MxsvpnNiYZnE9r1HyMk9nc3iCuOt2PdMLv7Fe6+wN0XEr6q/8Dd31d0XGZ2mJkdEQ8T2oUfpeDj6O4vAM+a2eujSecB24qOK+FCqs0t8fqLjOsZ4Gwze1X02Yz3V+frVycvVOS8gLCQ6CIjcCTwfJPyFxDu4vg58IlJyn0FeHebY72Z0Ca2j3DWsprQ1nUP8DPgn4Gjo7IGXBfF+Qgw2MF9eA7ha+XDVC8KX1B0bMDpwJYorkeBK6PpJwM/BrYTviYPRNNnRePbo/knT0P9G6J6l0uhcUXrfyh6bY3rd9HHMVrXGcBYdCxvB47qkrgOI5zNvjoxrRvi+jTw06jefxUYmI76VfhP/6OLeHe4+59E4xuBz7n7t6L/bqe7+0M5lnMU8Dt332Nm8wgP21ju7ts6GL6ISNcotMnFzG4mJN7Xm9kOM1sNvA9YbWbxWcrynIv7I2Aset+9wN8pmYvIoaTwM3QREWmPrrooKiIiU5fnIdEdMW/ePF+4cGFRqxcRKaXNmze/6A2eKVpYQl+4cCFjY2NFrV5EpJTM7BeN5qnJRURkhmia0C2jy9jU/CEze9mqXVhe2f4wq36/b4IND/2S/ft1MVdEJCnPGfpXaN4PwQ+92inWVQcfVmPf3vIcf3HzFr56f8NvHSIih6SmCd0zOtAq0nsGj8cMnnrxt0WHIiLSVdrVhr7EwlNpvmdmf9yokJmtiTrPGtu1a9eUVlSpGHNm9zGhJhcRkRrtSOg/IXSK9R+A/03o5yGTuw+7+6C7D86fn3nXTS69PRXG9+9vXlBE5BBy0And3V9x93+Nhu8E+qK+VDqmr2KMT+gMXUQk6aATupkdE3WihZktjpbZkb6iYz09xriaXEREajT9YVHUgdYQMM/MdgCfJDzwF3e/ntB/70fMbBz4N8JDUDuabfsqFSV0EZGUpgnd3S9sMv8LwBfaFlEOPRVjfEJt6CIiSaX8pWi4KKozdBGRpHImdJ2hi4jUKWdC10VREZE65Uzoum1RRKROSRO6flgkIpJWzoSuJhcRkTrlTOhqchERqVPOhK7bFkVE6pQzoeu2RRGROuVM6D0VdZ8rIpJSzoReMfbpLhcRkRqlTegTuigqIlKjnAm9x9inJhcRkRrlTOgVtaGLiKSVMqGr+1wRkXqlTOhm0NlHaIiIlE8pE3qPGfuV0UVEapQyoVcqhprQRURqlTKhm6EzdBGRlFIm9IqZ2tBFRFKaJnQzu9HMdprZow3mm5l93sy2m9nDZnZm+8OsVdEZuohInTxn6F8Blk4y/3zglOi1BvjiwYc1uYouioqI1Gma0N39PuDXkxRZDqzz4H5gjpkd264As5jpoqiISFo72tCPA55NjO+IpnVMxcJf11m6iMgB03pR1MzWmNmYmY3t2rVrysupWMjoOksXEalqR0J/Djg+Mb4gmlbH3YfdfdDdB+fPnz/lFcZn6GpHFxGpakdC3wCsiu52ORt42d2fb8NyG7IDZ+hK6CIisd5mBczsZmAImGdmO4BPAn0A7n49cCdwAbAd+B3wwU4FG4ubXJTPRUSqmiZ0d7+wyXwHLm5bRDmoyUVEpF5pfykKuigqIpJUyoRuOkMXEalTyoR+oA1dz7gQETmgpAk9/NUZuohIVTkTekW3LYqIpJUyoZsuioqI1CllQleTi4hIvZImdDW5iIiklTKh96jJRUSkTikT+oH70JXRRUQOKGVCV18uIiL1ypnQo6jVhi4iUlXOhK6LoiIidUqZ0HUfuohIvVImdD1TVESkXkkTus7QRUTSSprQw1+1oYuIVJUyoeuZoiIi9UqZ0HUfuohIvZIm9PBXZ+giIlUlTei6KCoikpYroZvZUjN73My2m9nlGfM/YGa7zOzB6PWh9oeaXF/4qzN0EZGq3mYFzKwHuA54G7ADeMDMNrj7tlTRb7j7JR2IsU61DV0JXUQklucMfTGw3d2fdPe9wC3A8s6GNTk1uYiI1MuT0I8Dnk2M74impa0ws4fN7FYzOz5rQWa2xszGzGxs165dUwg3qKj7XBGROu26KPpdYKG7nw58H7gpq5C7D7v7oLsPzp8/f8orU18uIiL18iT054DkGfeCaNoB7r7b3fdEo18GzmpPeNnUl4uISL08Cf0B4BQzO8nM+oGVwIZkATM7NjG6DHisfSHWq1R0hi4iktb0Lhd3HzezS4C7gB7gRnffamZXAWPuvgH4CzNbBowDvwY+0MGYD5yhT+gMXUTkgKYJHcDd7wTuTE27MjF8BXBFe0NrTA+4EBGpV+pfiqoNXUSkqtQJff/+ggMREekipUzo8U//1973c52li4hESpnQXzf/cF7V38MDT/+GX/92b9HhiIh0hVIm9Nn9PXziz/4IgHHduygiApQ0oQP0VULo+ybUkC4iAiVO6L09oSF9fEJn6CIiUOqEHkIf160uIiJAiRN6X/Rz0X06QxcRAUqc0A+coSuhi4gApU7o0Rm6mlxERIASJ/T4LhedoYuIBKVN6NW7XHSGLiICJU7ofQeaXHSGLiICJU7ovQeaXHSGLiICZU7oPbptUUQkqbQJvU8/LBIRqVHahN5b0U//RUSSSpvQ4zN0dc4lIhKUPqGr+1wRkSBXQjezpWb2uJltN7PLM+YPmNk3ovmbzGxh2yNN0X3oIiK1epsVMLMe4DrgbcAO4AEz2+Du2xLFVgO/cfd/b2YrgauB93Qi4Fj8S9HNv/gNR8zqo6+nwpteN5ejDuvv5GpFRLpW04QOLAa2u/uTAGZ2C7AcSCb05cCnouFbgS+YmXkHH/g5u7+HI2b1cvuDv+T2B38JwKtn9/Gfz1pAJbpgmkf+kq0WBmvhDdbyslsoW9K4W134obBPWl52q29oadktlG3xw9PaslvTDXGfvmAOi086uqVl55EnoR8HPJsY3wG8sVEZdx83s5eBucCLyUJmtgZYA3DCCSdMMeSgv7fCjy5/Cy/9dh/j+/fzs53/yie/s5WvbXom9zKc/P9vWv3X1FLxlpfdHXG3+v+6tWW3tGiRUvnwf3xdYQm9bdx9GBgGGBwcPOiP7JGz+jhyVh8AJ88/nLf/8TEHu0g5BLT8j6iF4q1W6lZiaX3ZLZRtcemd/IfbLXF38ljGN3W0W56E/hxwfGJ8QTQtq8wOM+sFXg3sbkuEIm3WajNEB1staL3BQKSxPP8mHgBOMbOTzKwfWAlsSJXZALw/Gn438INOtp+LiEi9pmfoUZv4JcBdQA9wo7tvNbOrgDF33wDcAHzVzLYDvyYkfRERmUZW1Im0me0CfjHFt88jdcG1i3RrbIqrNYqrNYqrNQcT14nuPj9rRmEJ/WCY2Zi7DxYdR5ZujU1xtUZxtUZxtaZTcZX2p/8iIlJLCV1EZIYoa0IfLjqASXRrbIqrNYqrNYqrNR2Jq5Rt6CIiUq+sZ+giIpKihC4iMkOULqE365u9w+u+0cx2mtmjiWlHm9n3zexn0d+joulmZp+P4nzYzM7sYFzHm9m9ZrbNzLaa2ce6ITYzm2VmPzazh6K4Ph1NPynqN3971I9+fzR9WvvVN7MeM9tiZnd0S1xm9rSZPWJmD5rZWDStG+rYHDO71cx+amaPmdmSouMys9dH+yl+vWJmlxYdV7Suv4zq/KNmdnP0Weh8/XL30rwIv1T9OXAy0A88BJw6jes/FzgTeDQx7Rrg8mj4cuDqaPgC4HuEzjrOBjZ1MK5jgTOj4SOAJ4BTi44tWv7h0XAfsCla3zeBldH064GPRMMfBa6PhlcC3+jw8fw48HXgjmi88LiAp4F5qWndUMduAj4UDfcDc7ohrkR8PcALwIlFx0XoffYpYHaiXn1gOupXR3dyB3bUEuCuxPgVwBXTHMNCahP648Cx0fCxwOPR8Frgwqxy0xDjdwgPJOma2IBXAT8hdL38ItCbPqaE7iWWRMO9UTnrUDwLgHuAtwB3RB/ybojraeoTeqHHkdDZ3lPpbS46rlQsfwr8qBviotqd+NFRfbkDePt01K+yNblk9c1+XEGxxF7j7s9Hwy8Ar4mGC4k1+rq2iHA2XHhsUbPGg8BO4PuEb1gvuft4xrpr+tUH4n71O+Fa4DIgfobh3C6Jy4G7zWyzhecHQPHH8SRgF/CPURPVl83ssC6IK2klcHM0XGhc7v4c8PfAM8DzhPqymWmoX2VL6F3Nw7/Ywu4DNbPDgfXApe7+SnJeUbG5+4S7n0E4I14M/OF0x5BmZn8O7HT3zUXHkuEcdz8TOB+42MzOTc4s6Dj2Epoav+jui4DfEpoyio4LgKgtehnwrfS8IuKK2uyXE/4RvhY4DFg6HesuW0LP0zf7dPuVmR0LEP3dGU2f1ljNrI+QzL/m7rd1U2wA7v4ScC/hq+YcC/3mp9d9IC7rbL/6bwaWmdnTwC2EZpd/6IK44rM73H0n8G3CP8Gij+MOYIe7b4rGbyUk+KLjip0P/MTdfxWNFx3XW4Gn3H2Xu+8DbiPUuY7Xr7Il9Dx9s0+3ZF/w7ye0X8fTV0VX1s8GXk58DWwrMzNCF8aPuftnuyU2M5tvZnOi4dmEdv3HCIn93Q3i6ni/+u5+hbsvcPeFhDr0A3d/X9FxmdlhZnZEPExoF36Ugo+ju78APGtmr48mnUd4pnDhdT9yIdXmlnj9Rcb1DHC2mb0q+mzG+6vz9auTFyo68SJcqX6C0Bb7iWle982ENrF9hLOW1YS2rnuAnwH/DBwdlTXguijOR4DBDsZ1DuFr5cPAg9HrgqJjA04HtkRxPQpcGU0/GfgxsJ3wNXkgmj4rGt8ezT95Go7pENW7XAqNK1r/Q9Fra1y/iz6O0brOAMaiY3k7cFSXxHUY4Wz21Ylp3RDXp4GfRvX+q8DAdNQv/fRfRGSGKFuTi4iINKCELiIyQyihi4jMEEroIiIzhBK6iMgMoYQuIjJDKKGLiMwQ/x8ZMJOjxMMhQgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "<Figure size 432x288 with 2 Axes>" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", @@ -216,7 +185,7 @@ }, { "cell_type": "code", - "execution_count": 166, + "execution_count": null, "id": "740a307c-7f4d-4978-a561-2424309cc310", "metadata": {}, "outputs": [], @@ -241,7 +210,7 @@ }, { "cell_type": "code", - "execution_count": 182, + "execution_count": null, "id": "3b570dd4-09fa-41d8-8d80-ba0c6ae05fa5", "metadata": {}, "outputs": [], @@ -254,23 +223,10 @@ }, { "cell_type": "code", - "execution_count": 183, + "execution_count": null, "id": "c4af7656-ace9-4594-ac32-3ccd027c7811", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAihUlEQVR4nO3dfbRcdX3v8fcnDyQNBIkkPOXMycE2VFJBsEfqWlCFVjDqvQnKWm3wlIurYKxKBUVbkCXa0PT6sBb13i4sRqBXb4ORK9gGjcaooAshmBOMpEkWEMODCamEJDyUh0DM9/6x9yQ7kznn7DlnzpnZez6vtWadmT17n/nNyeQzv/nu3/x+igjMzKy8xrW6AWZmNroc9GZmJeegNzMrOQe9mVnJOejNzEpuQqsbUGv69OnR09PT6mZYia1du/bpiJgx1o/r17aNpsFe120X9D09PfT397e6GVZikh5vxeP6tW2jabDXtUs3ZmYl56A3Mys5B72ZWck56K1jSapIukvSRkkbJF1eZ5/5kh6UtE5Sv6SzMvddLOmR9HLx2LbeLL+2OxlrNob2AldGxAOSpgJrJa2KiI2ZfX4ELI+IkHQqcBvwekmvBT4D9AKRHrs8InaP9ZMwG0oxevRLl0JPD4wbl/xcurTVLbISiIjtEfFAev15YBMws2af/4oDM/8dThLqAO8AVkXErjTcVwFzx6blZo1p/x790qWwcCG8+GJy+/HHk9sAfX2ta5eViqQe4HTg/jr3vQf4n8AxwLvTzTOBX2d220rNm0R67EJgIUB3d3dT22yWV/sH/TXXHAj5qhdfhL/+a9izByZPzn+ZNAnGj2/N8xiJpUuTv8MTT0B3Nyxe7De5JpJ0BHA7cEVEPFd7f0R8G/i2pLcC1wFvz/u7I2IJsASgt7fXc4JbS7R/0D/xRP3tu3fDJZc0/vsmTkwCv5E3iLxvInn2m9Dgn9yfaEaVpIkkIb80Iu4YbN+I+Kmk10maDmwDzs7c3QXcPVrtNBuJ9g/67u4k3Gp1dcE998DLL+e/7Nkz9D4vvAA7dw58/0gXahk/vrE3jn//9/qfaK65xkE/QpIE3AxsiojrB9jn94BfpSdj3wRMAnYCK4F/kDQt3fU84OoxaLZZw9o/6BcvPrhHCzBlCnzuczBr1ti2JQL27m3szaWRN5nq5ZlnDn7jqWegTzrWiDOBi4D1ktal2z4FdANExI3ABcD/kPQq8BLw5+nJ2V2SrgPWpMctiohdY9l4s7zaP+irvdYrroCnn4bjj4cvfrE1vVkpKf1MnAhTp47NY/b01P9E8zu/k/w9pk8fm3aUUETcA2iIfT4PfH6A+24BbhmFppk1VTGGV/b1wY03JtdXruysksXixcknmKyJE+Gll2DOHPjmN0deTjKzUitG0MOBk5h797a2HWOtrw+WLEnKVFLy81/+BX75y+T6ggVw/vnw5JOtbqmZtaniBH11WGSnBT0kYf/YY7BvX/Kzrw9OOQXuuy8pY/3gB0nv/qab3Ls3s0PkCnpJcyU9JGmzpKvq3P+P6Vwg6yQ9LOmZzH2/zdy3fNgt7dQe/WAmTIBPfALWr4fTToMPfADe/nbYsqXVLTOzNjJk0EsaD9wAvBOYA1woaU52n4j4WEScFhGnAf8EZMcjv1S9LyLmDbul1aD/7W+H/StK6/d+D3784+Q8xpo1SW//S1/y38rMgHw9+jOAzRGxJSJeAZYB8wfZ/0LgG81o3EE6uXSTx7hx8MEPwsaNcM458LGPwZlnwoYNrW6ZmbVYnqDPNacHgKRZwInAjzObJ6fTu66WdP4Axy1M9+nfsWNH/Va4dJNPVxfceWfyjdrNm+H00+G66+CVV1rdMjNrkWafjF0AfCsisjWDWRHRC7wP+JKk3609KCKWRERvRPTOmDHAms0u3eQnwfvel/TuL7gArr0W3vxm8HqlZh0pT9BvAyqZ213ptnoWUFO2iYht6c8tJHOBnN5wK8Glm+E45hj4xjeSaRSefhr+6I/gb/4mGYNvZh0jT9CvAWZLOlHSYSRhfsjoGUmvB6YB92W2TZM0Kb0+neQr5xtrj83FpZvhmzcvqdVfckkyHPPUU+EnP2l1q8xsjAwZ9BGxF7iMZBKnTcBtEbFB0iJJ2VE0C4BlmUUaAE4G+iX9ErgL+FzN6j35uXQzMkcdlXzx6kc/Ssbjn302fOhD8Nwhs/KaWcnkmusmIlYAK2q2XVtz+7N1jrsXOGUE7TvAPfrm+JM/gQcfhE9/OhmC+Z3vwFe+Au96V6tbZmajxN+M7USHHw7XXw/33gtHHgnvfjdcdFFSxzez0ilO0Lt003xveQs88EAyKmfZsmQahdtu8zQKZiVTvKB3j765Jk2Cv/s7WLs2mSTtz/8c3vMeT5JmViLFCXqXbkbXqacemCRt5cqkd3/zze7dm5VAcYLepZvRV50k7cEH4Y1vhEsvhXPP9SRpZgVXvKB3j370zZ4Nd90F//zP8POfe5I0s4IrTtC7dDO2xo2Dv/qr5ItWZ5+dTJJ21lnJtApmVijFCXqXblqjUknG2v/rv8Ijj3iSNLMCKl7Qu0c/9qRkVauNG+G97/UkaWYFU5ygd+mm9bKTpO3YkUyS9rd/60nSzNpccYLePfr2MW9e0rv/y7+EL3whGaHz05+2ulVmNoDiBP24cUkJwTX69nDUUfDVr8IPf5i8+b7tbfDhD3uSNLM2VJygh6R84x59e/nTP00WJ//Yx5I1a9/wBlixYujjzGzMFCvoJ0xw0Lej7CRpU6cemCRt585Wt8zMKGLQu3TTvqqTpH3608kkaSef7EnSzNpAsYLepZv2N2kSLFqUTJLW3Z1Mkvbe93qSNLMWKlbQu3RTHKeeCqtXJ6Nyvv99T5Jm1kLFC3qXbopjwgT45Cc9SZpZi+UKeklzJT0kabOkq+rc/4+S1qWXhyU9k7nvYkmPpJeLR9Ra9+iLyZOkmbXUkEEvaTxwA/BOYA5woaQ52X0i4mMRcVpEnAb8E3BHeuxrgc8AfwScAXxG0rRht9Y1+uLKTpL2trclwzH/+I89SZrZGMjToz8D2BwRWyLiFWAZMH+Q/S8EvpFefwewKiJ2RcRuYBUwd9itdemm+CoV+O53k0nSHn44mSTt7/8evv516OlJ3hB6emDp0la31Kw0JuTYZybw68ztrSQ99ENImgWcCPx4kGNn1jluIbAQoLu7e5DWunRTCtVJ0s49Fz760WQ4pnTgRO3jj8PChcn1vr7WtdOsJJp9MnYB8K2IaKjbHRFLIqI3InpnzJgx8I4u3ZTLMcck4+1nzDh0NM6LL8I117SmXWYlkyfotwGVzO2udFs9CzhQtmn02KG5dFNOTz9df/sTT4xtO8xKKk/QrwFmSzpR0mEkYb68didJrwemAfdlNq8EzpM0LT0Je166bXhcuimngcp1g5XxRkhSRdJdkjZK2iDp8jr79El6UNJ6SfdKemPmvsfS7eskeWJ+a2tDBn1E7AUuIwnoTcBtEbFB0iJJ8zK7LgCWRRz4DB4Ru4DrSN4s1gCL0m3D49JNOS1eDFOmHLxtypRk++jZC1wZEXOAtwAfqR1NBjwKvC0iTiF5HS+puf+cdLRZ72g21Gyk8pyMJSJWACtqtl1bc/uzAxx7C3DLMNt3MPfoy6l6wvWDH4QXXoBZs5KQH8UTsRGxHdieXn9e0iaSgQIbM/vcmzlkNUnp0axwcgV923CNvrz6+mDzZvjsZ5Nhl4cdNmYPLakHOB24f5DdLgG+l7kdwA8kBfCViKjt7Vd/d74RZWajqFhTILh0U26V9Lz9tuGfr2+UpCOA24ErIqLuqimSziEJ+r/NbD4rIt5E8kXCj0h6a71jc48oMxtFxQp6l27KrRr0v/714Ps1iaSJJCG/NCLuGGCfU4GbgPkRsX+C/YjYlv58Cvg2yRcLzdpS8YLepZvyGsOglyTgZmBTRFw/wD7dJNN5XBQRD2e2Hy5pavU6yWiy/xj1RpsNU7Fq9C7dlNvY9ujPBC4C1ktal277FNANEBE3AtcCRwNfTt4X2JuOsDkW+Ha6bQJwa0R8fywabTYcxQp6l27K7fDDYdq0MQn6iLgH0BD7XApcWmf7FuCNhx5h1p5curH2UqmMWY3erFMUL+jdoy83B71Z0xUr6F2jLz8HvVnTFSvoXbopv0oFdu5MZq80s6YoXtC7R19u1ZE3W7e2th1mJVKsoHfppvzG+EtTZp2gWEHv0k35OejNmq54Qe8efbnNTFeadNCbNU2xgt6lm/KbPDlZWtBBb9Y0xQp6l246Q6Xik7FmTVS8oHePvvw8lt6sqYoV9C7ddAYHvVlT5Qp6SXMlPSRps6SrBtjnzzILLd+a2f7bdAHldZIOWVS8IdXSzYFlaa2MKhV49ll4/vlWt8SsFIacvVLSeOAG4FxgK7BG0vKI2JjZZzZwNXBmROyWdEzmV7wUEac1p7Vpc/ftS3r3Vk7ZIZZzatfrNrNG5enRnwFsjogtEfEKsAyYX7PPB4AbImI37F91p/mq4e7yTbl5LL1ZU+UJ+plA9n/c1nRb1knASZJ+Jmm1pLmZ+yZL6k+3n1/vASQtTPfp37Fjx8AtqfboHfTl5qA3a6pmLTwyAZgNnA10AT+VdEpEPAPMiohtkl4H/FjS+oj4VfbgiFgCLAHo7e0duABfDXoPsSy3E04AyUFv1iR5evTbgErmdle6LWsrsDwiXo2IR4GHSYI/u4jyFuBu4PRht9alm84wcSIcf7yD3qxJ8gT9GmC2pBMlHQYsAGpHz/wbSW8eSdNJSjlbJE2TNCmz/UxgI8Pl0k3n8BBLs6YZMugjYi9wGbAS2ATcFhEbJC2SNC/dbSWwU9JG4C7gkxGxEzgZ6Jf0y3T757KjdRrm0k3ncNCbNU2uGn1ErABW1Gy7NnM9gI+nl+w+9wKnjLyZKffoO0elAitWJN+Z0KBreJvZEIr3zVhw0HeCSiVZZWr37la3xKzwihX0Lt10Dg+xNGuaYga9e/Tl19WV/PQslmYjVqygd+mmc7hHb9Y0xQp6l246x3HHJf/eDnqzEStm0LtHX37jxyffkHXQm41YsYLepZvO4rH0Zk1RrKB36aazOOjNmqKYQe8efWeorh3rhWbMRqRYQe/STWepVGDPHhhs6mozG1Kxgt49+s7iIZZmTVHMoHeNvjM46M2aolhB79JNZ3HQmzVFsYLepZvOMmMGTJrkoDcboWIGvUs3nUFK5rxx0JuNSDGD3j36zjGKY+klVSTdJWmjpA2SLq+zT5+kByWtl3SvpDdm7psr6SFJmyVdNSqNNGuCYgW9a/SdpzqWfnTsBa6MiDnAW4CPSJpTs8+jwNsi4hTgOtJF7CWNB24A3gnMAS6sc6xZWyhW0Lt003m6umDbtlH5N4+I7RHxQHr9eZKlMmfW7HNvRFRXP1kNpPMncwawOSK2RMQrwDJgftMbadYEuYI+z0dUSX+W+Qh8a2b7xZIeSS8Xj6i1Lt10nkol+ff+zW9G9WEk9QCnA/cPstslwPfS6zOBbE1pKzVvEunvXSipX1L/Dn/xy1pkyDVjMx9RzyV5Ma+RtDy7yLek2cDVwJkRsVvSMen21wKfAXqBANamxw5vfTiXbjpPdojlCSeMykNIOgK4HbgiIp4bYJ9zSIL+rEZ+d0QsIS339Pb2ei4Ha4k8Pfo8H1E/ANxQDfCIeCrd/g5gVUTsSu9bBcwddmtduuk8ozyWXtJEkpBfGhF3DLDPqcBNwPyI2Jlu3gZUMrt1pdvM2k6eoM/zEfUk4CRJP5O0WtLcBo7N//HWpZvOM4pBL0nAzcCmiLh+gH26gTuAiyLi4cxda4DZkk6UdBiwAFje9EaaNcGQpZsGfs9s4GySns1PJZ2S9+DcH29duuk806bBlCmj1aM/E7gIWC9pXbrtU0A3QETcCFwLHA18OXlfYG9E9EbEXkmXASuB8cAtEbFhNBppNlJ5gj7PR9StwP0R8SrwqKSHSYJ/G0n4Z4+9e7iNdemmA0mjNpY+Iu4BNMQ+lwKXDnDfCmBF0xtm1mR5Sjd5PqL+G2mgS5pOUsrZQtLbOU/SNEnTgPPSbcPj0k1n8gIkZiMyZNBHxF6g+hF1E3BbRGyQtEjSvHS3lcBOSRuBu4BPRsTOiNhF8iWTNellUbpteFy66UwOerMRyVWjr/cRNSKuzVwP4OPppfbYW4BbRtbMVDXoXbrpLJUKbN8Or74KEye2ujVmhVOsb8ZKSdi7R99ZKpVkOcEnn2x1S8wKqVmjbsaOg77zZIdYzprV2raMgr+7cwMbn6z7PS2zg8w54Ug+89//oOHjitWjh+SErIO+s3gBErMRKV6PfsIE1+g7TcmDfjg9NLNGFK9H79JN55k6FY48cjSnKzYrteIFvUs3nclDLM2GrZhB79JN53HQmw1bMYPePfrO46A3G7biBb1r9J2pUoGnnoI9e1rdErPCKV7Qu3TTmaojb3xC1qxhxQx69+g7T8mHWJqNpuIFvUs3nclBbzZsxQt6l246U1dX8tNBb9awYga9e/SdZ8oUOPpoB73ZMBQv6F266VweYmk2LMULepduOpeD3mxYihn07tF3Jge92bAUL+hduulclQrs3g0vvNDqlpgVSq6glzRX0kOSNku6qs7975e0Q9K69HJp5r7fZrbXLireOJduOpe/NGU2LEPORy9pPHADcC6wFVgjaXlEbKzZ9ZsRcVmdX/FSRJw24pZWuXTTubJDLH//91vbFrMCydOjPwPYHBFbIuIVYBkwf3SbNQiXbjqXvzRlNix5gn4mkP2ftTXdVusCSQ9K+pakSmb7ZEn9klZLOr/eA0hamO7Tv2PHjsFb4x5955qZvuwc9GYNadbJ2DuBnog4FVgFfC1z36yI6AXeB3xJ0u/WHhwRSyKiNyJ6Z8yYMfgjuUbfuSZNgmOPddCbNShP0G8Dsj30rnTbfhGxMyKq88feBPxh5r5t6c8twN3A6SNor0s3nc5DLM0alifo1wCzJZ0o6TBgAXDQ6BlJx2duzgM2pdunSZqUXp8OnAnUnsRtjEs3nc1Bb9awIUfdRMReSZcBK4HxwC0RsUHSIqA/IpYDH5U0D9gL7ALenx5+MvAVSftI3lQ+V2e0ToMtdummo1Uq8MMftroVZoUyZNADRMQKYEXNtmsz168Grq5z3L3AKSNs48Hco+9slQo8/zw8+yy85jWtbo1ZIfibsVYsHmJp1rDiBb1LN53NQW/WsGIGvXv0nctBb9aw4gW9Szed7fjjYdw4B71ZA4oX9C7ddLYJE+CEExz0Zg0oZtC7R9/ZPJberCHFC3qXbqxSGfFUxZIqku6StFHSBkmX19nn9ZLuk7RH0idq7ntM0vp0+u3+ETXGbJTlGkffViZMgAjYty+p1Vrn6eqCO+9MXgfScH/LXuDKiHhA0lRgraRVNV/o2wV8FDh/gN9xTkQ8PdwGmI2V4iXlhPS9yXX6zlWpwEsvwa5dw/4VEbE9Ih5Irz9PMm3HzJp9noqINcCrI2muWasVL+jHj09+unzTuZo8xFJSD8lke/c3cFgAP5C0VtLCQX53/im4zUZJ8YK+2qN30HeuJga9pCOA24ErIuK5Bg49KyLeBLwT+Iikt9bbqaEpuM1GSXGD3qWbztWkoJc0kSTkl0bEHY0cm5l++yng2yQrsZm1peIFvUs3duyxMHHiiIJekoCbgU0RcX2Dxx6ensBF0uHAecB/DLsxZqOsmKNuwEHfycaNS5YVHFmP/kzgImC9pHXptk8B3QARcaOk44B+4Ehgn6QrgDnAdODbyXsFE4BbI+L7I2mM2WgqbtC7dNPZRvilqYi4Bxh0bGZE/CfJimq1ngPeOOwHNxtjxSvduEdv4G/HmjWgeEHvGr3BgW/H7tvX6paYtb3iBb1LNwZJ0L/6Kjz1VKtbYtb2cgW9pLmSHpK0WdJVde5/v6Qd6bwf6yRdmrnvYkmPpJeLR9xil24MPC+9WQOGPBkraTxwA3AusBVYI2l5nUW+vxkRl9Uc+1rgM0AvyTcJ16bH7h52i126MTg46N/85ta2xazN5enRnwFsjogtEfEKsAyYn/P3vwNYFRG70nBfBcwdXlNTLt0YHAj6Ec5iadYJ8gT9TCD7+XgrNZM/pS6Q9KCkb0mqNHJsQ/OBuHRjAEcfDZMnu3RjlkOzTsbeCfRExKkkvfavNXJwQ/OBuHRjkExP3NXloDfLIU/QbwMqmdtd6bb9ImJnROxJb94E/GHeYxvm0o1VeSy9WS55gn4NMFvSiZIOAxYAy7M7SDo+c3MeydzeACuB8yRNkzSNZE6QlSNqsUs3VuWgN8tlyFE3EbFX0mUkAT0euCUiNkhaBPRHxHLgo5Lmkazaswt4f3rsLknXkbxZACyKiOGvFgEu3dgBlQo8+WTy6a76ujCzQ+Sa6yYiVgArarZdm7l+NXD1AMfeAtwygjYezKUbq6pUktfB9u1Jvd7M6iruN2Pdozd/acosl+IFvUs3VuWgN8uleEG/Mj2X+573QE8PLF3a0uZYCznozXIpVtAvXQqLFiXXI+Dxx2HhQod9p3rNa+CIIxz0ZkMoVtBfcw28/PLB2158MdlunUfyEEuzHIoV9E880dh2Kz8HvdmQihX03d2Nbbfyc9CbDalYQb94MUyZcvC2KVOS7daZKhX4zW/glVda3RKztlWsoO/rgyVLYNaspD47a1Zyu6+v1S2zVqlUkhPzTz7Z6paYta1c34xtK319DnY7oPqN2F//Ohlua2aHKFaP3qyWx9KbDclBb8XmoDcbkoPeiu2II+Cooxz0ZoNw0FvxeYil2aAc9FZ8DnqzQTnorfgc9GaDctBb8VUq8PTT8NJLrW6JWVty0FvxVUfebN3a2naYtalcQS9prqSHJG2WdNUg+10gKST1prd7JL0kaV16ubFZDTfbz0MszQY15DdjJY0HbgDOBbYCayQtj4iNNftNBS4H7q/5Fb+KiNOa01yzOhz0ZoPK06M/A9gcEVsi4hVgGTC/zn7XAZ8HXq5zn9noyU6DYGaHyBP0M4Hs/6Ct6bb9JL0JqETEd+scf6KkX0j6iaQ/rvcAkhZK6pfUv2PHjrxtN0tMngwzZjjozQYw4pOxksYB1wNX1rl7O9AdEacDHwdulXRk7U4RsSQieiOid8aMGSNtknWiSsUnY80GkCfotwGVzO2udFvVVOANwN2SHgPeAiyX1BsReyJiJ0BErAV+BZzUjIabHcRj6c0GlCfo1wCzJZ0o6TBgAbC8emdEPBsR0yOiJyJ6gNXAvIjolzQjPZmLpNcBs4EtTX8WZl1dDQe9pIqkuyRtlLRB0uV19nm9pPsk7ZH0iZr7co1GM2u1IUfdRMReSZcBK4HxwC0RsUHSIqA/IpYPcvhbgUWSXgX2AX8VEbua0XCzg1Qq8Mwz8F//lUx0ls9e4MqIeCAdNbZW0qqaEWW7gI8C52cPzDsazawd5Fp4JCJWACtqtl07wL5nZ67fDtw+gvaZ5ZMdYnnyybkOiYjtJOeRiIjnJW0iGWiwMbPPU8BTkt5dc/j+0WgAkqqj0Rz01nb8zVgrhxGOpZfUA5zOod8DGciQo9HM2oWD3sphBEEv6QiST55XRMRzzWyWhw5bO3DQWznMnJksGN/4CdmJJCG/NCLuaODQoUajAR46bO3BQW/lMHEiHHdcQ0EvScDNwKaIuL7BRxx0NJpZO8l1MtasEBofS38mcBGwXtK6dNungG6AiLhR0nFAP3AksE/SFcCciHiu3mi0pjwPsyZz0Ft5VCqwIX/WRsQ9gIbY5z9JyjL17jtkNJpZO3Lpxsqj2qOPaHVLzNqKg97Ko1KBF15IvjhlZvs56K08PC+9WV0OeisPLyloVpeD3srDPXqzuhz0Vh7HHQfjxzvozWo46K08xo+HE05w0JvVcNBbuXgBErNDOOitXBz0Zodw0Fu5VNeO9ZemzPZz0Fu5VCrw8svw9NOtbolZ23DQW7k8+mjy89hjoacHli5taXPM2kGuoM+7CLKkCySFpN7MtqvT4x6S9I5mNNqsrqVL4cYbk+sR8PjjsHChw9463pBBn1kE+Z3AHOBCSXPq7DcVuJzMUmzpfguAPwDmAl9Of59Z811zTVK2yXrxxWS7WQfL06PfvwhyRLwCVBdBrnUd8Hkg+z9tPrAsIvZExKPA5vT3mTXfE080tt2sQ+QJ+iEXQZb0JqASEd9t9Nj0eK+raSPX3d3YdrMOMeKTsZLGAdcDVw73d3hdTWuKxYthypSDt02Zkmw362B5gn6oRZCnAm8A7pb0GPAWYHl6QjbXAspmTdHXB0uWwKxZyULhs2Ylt/v6Wt0ys5bKs5Tg/kWQSUJ6AfC+6p0R8SwwvXpb0t3AJyKiX9JLwK2SrgdOAGYDP29e881q9PU52M1qDBn0EbG33iLIkhYB/RGxfJBjN0i6DdgI7AU+EhG/bVLbzcwsh1yLg9dbBDkirh1g37Nrbi8GXCQ1M2sRfzPWzKzkHPRmZiXnoDczKzlFm03nKmkH8PgoP8x0oNXTG7a6Da1+/Fa2YVZEjPkXNoZ4bbfDv8doKfNzg/Z5fgO+rtsu6MeCpP6I6B16z/K2odWP3y5taBdl/luU+blBMZ6fSzdmZiXnoDczK7lODfolrW4ArW9Dqx8f2qMN7aLMf4syPzcowPPryBq9mVkn6dQevZlZx3DQm5mVXKmDfqi1biV9XNJGSQ9K+pGkWWP5+Jn9DllrdyzbIOnP0r/DBkm3jnUbJHVLukvSL9J/i3c1uw3tKu9rpJ1JqqT/ftXX0OXp9tdKWiXpkfTntHS7JP3v9Dk/mC5c1NYkjU9fn99Jb58o6f70OXxT0mHp9knp7c3p/T0tbXhVRJTyQjLT5q+A1wGHAb8E5tTscw4wJb3+IeCbY/n46X5TgZ8Cq4HeFvwNZgO/AKalt49pQRuWAB9Kr88BHmv162csLnlfI+1+AY4H3pRenwo8nP47fgG4Kt1+FfD59Pq7gO8BIlm/4v5WP4ccz/HjwK3Ad9LbtwEL0us3Zl6/HwZuTK8vaGamjORS5h79kGvdRsRdEfFienM1ycIoY/b4qXpr7Y5lGz4A3BARuwEi4qkWtCGAI9PrrwGebHIb2lXe10hbi4jtEfFAev15YBPJkqHzga+lu30NOD+9Ph/4eiRWA0dJOn5sW52fpC7g3cBN6W0BfwJ8K92l9rlVn/O3gD9N92+pMgd9rvVqMy4h6WWM2eMPstbumLUBOAk4SdLPJK2WNLcFbfgs8BeStpJMh/3XTW5Du2r0Ndr20lLF6cD9wLERsT296z+BY9PrRXveXwL+BtiX3j4aeCYi9qa3s+3f/9zS+59N92+pMgd9bpL+AugFvjiGjznitXabZAJJ+eZs4ELgq5KOGuM2XAj8n4joIvlY/3/Tv48ViKQjgNuBKyLiuex9kdQyCjeWW9J/A56KiLWtbstIlPk/U671aiW9HbgGmBcRe8bw8Qdba3es2gBJb2R5RLwaEY+S1Fdnj3EbLiGpeRIR9wGTySxPWWKlWVNZ0kSSkF8aEXekm39TLcmkP6tlwSI97zOBeen/0WUkJZv/RVJuqi7clG3//ueW3v8aYOdYNriuVp8kGMWTJxOALcCJHDjR9Qc1+5xOcjJsdisev2b/u2n+ydg8f4O5wNfS69NJPnYePcZt+B7w/vT6ySQ1erX6NTTal0ZfI+16ITmp+nXgSzXbv8jBJ2O/kF5/NwefjP15q59Dzud5NgdOxv4/Dj4Z++H0+kc4+GTsba1ud0SUN+jTP/S7SHqovwKuSbctIum9A/wQ+A2wLr0sH8vHr9m36UGf828gkhLSRmB99cU7xm2YA/wsDbp1wHmtfu208jVatAtwFklZ5sHM/6V3kdSmfwQ8kv5fe23mNXdD+pzXj8brfpSeZzboXwf8HNichv6kdPvk9Pbm9P7XtbrdEeEpEMzMyq7MNXozM8NBb2ZWeg56M7OSc9CbmZWcg97MrOQc9GZmJeegNzMruf8PU+2ufdlBR3MAAAAASUVORK5CYII=\n", - "text/plain": [ - "<Figure size 432x288 with 2 Axes>" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "fig, ax = plt.subplots(1, 2)\n", "best_points_ = np.concatenate([best_points])\n", @@ -315,7 +271,7 @@ }, { "cell_type": "code", - "execution_count": 180, + "execution_count": null, "id": "5127a9e8-17a8-4a07-b825-2aaf11a6270e", "metadata": {}, "outputs": [], @@ -331,23 +287,10 @@ }, { "cell_type": "code", - "execution_count": 181, + "execution_count": null, "id": "c9b939a8-3a5f-41d6-8263-25dacebc4602", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAoRElEQVR4nO3deZRU9Zn/8feHpoUgqCi40dU0GoyQiEtaxxmMy0xUYhIwcSaDYRw9EUkmmKhZJhh/osEwo8mE+PtNNEqUTDKDose1jUQkUcdjFKVxCAQYFXFrYGR1GZWl4fn98b1lF0UvVV3rrfu8zqnTVbfurft0dfVT3/vc7/1+ZWY455xLhj6VDsA551z5eNJ3zrkE8aTvnHMJ4knfOecSxJO+c84lSN9KB5BtyJAh1tTUVOkwXA1bsmTJJjMbWu79+mfblVKun+uqS/pNTU20trZWOgxXwyS9Von9+mfblVKun2sv7zjnXIJ40nfOuQTxpO+ccwlSdTV958pFUgr4NXAIYMBsM/u/WetMAK4DdgPtwOVm9lT03IXA/4lW/aGZ/apcsbvS2LlzJ21tbWzbtq3SoXSpf//+NDQ0UF9f36vtPem7JGsHvm1mz0saBCyRtNDMVmas83ugxcxM0hjgbuBoSQcC1wDNhC+MJZJazGxruX8JVzxtbW0MGjSIpqYmJFU6nL2YGZs3b6atrY0RI0b06jXiUd6ZOxeamqBPn/Bz7txKR+RqgJmtN7Pno/vvAquAYVnr/K91jEq4LyHBA5wNLDSzLVGiXwiMK0/krlS2bdvGQQcdVJUJH0ASBx10UEFHItXf0p87F6ZMgfffD49fey08Bpg0qXJxuZoiqQk4Hni2k+e+APwzcDDw2WjxMOCNjNXayPrCiLadAkwBaGxsLGrMrjSqNeGnFRpf9Sf9q67qSPhp778P3/gGbN8O/fvnfuvXD+rqKvN7FGLu3PA+vP46NDbCzJn+hVdEkgYC9xLq9e9kP29m9wP3SzqVUN//dK6vbWazgdkAzc3NPo65q7jqT/qvv9758q1b4eKL83+9+vqQ/PP5ssj1CyWX9frm+Zb7kU5JSaonJPy5ZnZfd+ua2ZOSjpA0BFgLnJ7xdAPwRKnidMnyyCOPcNlll7Fr1y4mT57MtGnTivba1Z/0GxtDosvW0ABPPQXbtuV+276953Xeew82b+76+UInnamry+9L5MEHOz/SueoqT/oFUjhOvh1YZWazuljno8DL0YncE4B+wGZgAfBPkgZHq54FXFmGsF2N27VrF1OnTmXhwoU0NDRw4oknMn78eEaPHl2U16/+pD9z5p4tXYABA+D662H48PLGYgbt7fl90eTzhZO+vfXWnl9CnenqCMjlYyxwAbBc0tJo2feBRgAzuwU4D/h7STuBD4C/jU7sbpF0HbA42m6GmW0pZ/CuNj333HN89KMf5YgjjgBg4sSJPPjggwlK+unW7OWXw6ZNcNhh8OMfV6aVK4XyUH09DBpUnn02NXV+pPORj4T3Y8iQ8sRRg6L+9t2eFTOzG4AbunhuDjCnBKG5KvCDh1awct1ep3gKMvrw/bjm8x/vdp21a9eSSqU+fNzQ0MCzz+7Vv6DX4tFlc9IkuOWWcH/BgmSVNWbODEc2merr4YMPYPRouOuuwktOzrnEqP6Wflr6BGh7e2XjKLf0F1x2750xY+ArX4GJE+GOO+DnP4fDD69srM7VkJ5a5KUybNgw3nijozdwW1sbw4bt1Ru41+LR0oeOrpZJS/oQEv+rr8Lu3eHnpElwzDHwzDOh1PXoo6HVf9tt3up3LuZOPPFEXnrpJV555RV27NjBvHnzGD9+fNFeP6ekL2mcpBckrZa0V98hST+VtDS6vSjprYzndmU819LrSJPa0u9O377wne/A8uVw3HFwySXw6U/DmjWVjsw510t9+/blZz/7GWeffTajRo3iS1/6Eh//ePGOOnos70iqA24CziRcdbg4GmPkw/FJzOyKjPW/QbiyMe0DMzuu8EijUHftKvilas5HPwqPPQa/+AV897vhKGDmzHABWxwvRnMu4c455xzOOeeckrx2Li39k4DVZrbGzHYA84AJ3ax/PnBnMYLbQ5LLO7no0we++lVYuRLOOAOuuALGjoUVKyodmXOuiuSS9HMaYwRA0nBgBPBYxuL+klolLZJ0bhfbTYnWad24cWPnUXh5JzcNDfDQQ+FK3tWr4fjj4brrYMeOSkfmnKsCxT6ROxG4x8wyazDDzawZ+DJwo6Qjszcys9lm1mxmzUOHdjGvr5d3cifBl78cWv3nnQfTp8OJJ4LPz+pcj6zKO0MUGl8uSX8tkMp43BAt68xEsko7ZrY2+rmGMDbJ8XtvlgMv7+Tv4IPhzjvDUA6bNsGf/Rn84z+GPv7Oub3079+fzZs3V23iT4+n379//16/Ri799BcDIyWNICT7iYRW+x4kHQ0MBp7JWDYYeN/MtkeDVI0FftS7SL2802vjx8Opp4aE/+Mfw/33h+6dp51W6cicqyoNDQ20tbXRZZm5CqRnzuqtHpO+mbVLupQwwFQdMMfMVkiaAbSaWbob5kRgnu35FTkKuFXSbsJRxfVZsxLlEamXdwpywAEwe3a4mOuSS+D00+FrX4MbboD99qt0dM5Vhfr6+l7PSBUXOV2Ra2bzgflZy6ZnPb62k+2eBo4pIL4O3tIvjr/8S1i2DK6+Gm68EX7zG7j1VihR9zDnXHXxK3KTaN99YdYsePrp0Mr/7GfhggtC3d85V9Pik/S9vFN8J58Mzz8fevfMmxeGcrj7bh/KwbkaFr+k7y394urXD37wA1iyJMxP8Ld/C1/4AqxbV+nInHMlEJ+k7+Wd0hozpmMAtwULQqv/9tu91e9cjYlP0vfyTumlB3BbtgyOPRYmT4Yzz/QB3JyrIfFL+t7SL72RI+Hxx8MY/c89FwZwu/FG/8J1rgbEJ+l7eae8+vQJ/fhXrAh9+q+4Ak45JQzt4JyLrfgkfS/vVEYqFfry/8d/wEsv+QBuzsVc/JK+t/TLTwqzda1cCV/8og/g5lyMxSfpe3mn8jIHcNu4MQzg9r3v+QBuzsVIfJK+t/Srx/jxodX/la/Aj34Uevo8+WSlo3LO5SA+Sb9Pn1Bm8Jp+dTjggDA94+9+F76ITzsNvv51eOedSkfmnOtGfJI+hBKPt/Sry1/9VZiY/Yor4JZb4BOfgPnze97OOVcR8Ur6fft60q9GmQO4DRrUMYDb5s2Vjsw5lyV+Sd/LO9UrPYDb1VeHAdxGjfIB3JyrMvFK+l7eqX79+sGMGWEAt8bGMIDbF7/oA7g5VyXilfS9vBMfY8bAokWhd88jj/gAbs5VifglfS/vxEffvvDd7/oAbs5VkZySvqRxkl6QtFrStE6e/6mkpdHtRUlvZTx3oaSXotuFBUXrLf148gHcnKsaPSZ9SXXATcBngNHA+ZJGZ65jZleY2XFmdhzwr8B90bYHAtcAfwacBFwjaXCvo/WafnxlDuB22mmhi+enPuUDuDlXZrm09E8CVpvZGjPbAcwDJnSz/vnAndH9s4GFZrbFzLYCC4FxvY7Wyzvxl0rBww+HAdxefDEM4PbDH8Kvfw1NTeHLoakJ5s6tdKTO1aS+OawzDHgj43EboeW+F0nDgRHAY91sO6yT7aYAUwAaGxu7idbLOzUhPYDbmWfCN78ZunhKHSd5X3sNpkwJ9ydNqlycztWgYp/InQjcY2Z5NcfNbLaZNZtZ89ChQ7te0cs7teXgg0N//qFD9+7V8/77cNVVlYnLuRqWS9JfC6QyHjdEyzozkY7STr7b9szLO7Vp06bOl7/+ennjcC4Bckn6i4GRkkZI2oeQ2FuyV5J0NDAYeCZj8QLgLEmDoxO4Z0XLesfLO7Wpq5Jed6W+AklKSXpc0kpJKyRd1sk6kyQtk7Rc0tOSjs147tVo+VJJPrGAi40ek76ZtQOXEpL1KuBuM1shaYak8RmrTgTmmXUcp5vZFuA6whfHYmBGtKx3vLxTm2bOhAED9lw2YEBYXjrtwLfNbDRwMjA1u1ca8ApwmpkdQ/gcz856/oyo11pzKQN1rphyOZGLmc0H5mctm571+Noutp0DzOllfHvy8k5tSp+s/epX4b33YPjwkPBLeBLXzNYD66P770paRehksDJjnaczNllEKE86F2s5Jf2q4eWd2jVpEqxeDddeG7py7rNP2XYtqQk4Hni2m9UuBn6b8diARyUZcKuZZR8FpF87t55pzpVJvIZh8PJObUtF5/zX9v5cf74kDQTuBS43s05ngJF0BiHpfy9j8SlmdgLhosWpkk7tbNuce6Y5VybxSvpe3qlt6aT/xhvdr1ckkuoJCX+umd3XxTpjgNuACWb24QQBZrY2+rkBuJ9wEaNzVS9+Sd9b+rWrjElfkoDbgVVmNquLdRoJQ4pcYGYvZizfV9Kg9H1Cr7Q/lTxo54ogXjV9L+/UtvK29McCFwDLJS2Nln0faAQws1uA6cBBwM3hO4L2qKfOIcD90bK+wB1m9kg5gnauUPFK+t7Sr2377guDB5cl6ZvZU4B6WGcyMLmT5WuAY/fewrnqF7/yjtf0a1sqVbaavnNJFK+k7+Wd2udJ37mSilfS9/JO7fOk71xJxS/pe3mntqVSsHlzGGXTOVd08Ur6Xt6pfekePG1tlY3DuRoVr6Tv5Z3aV+YLtJxLmvglfS/v1DZP+s6VVPySvrf0a9uwaDZNT/rOlUS8kr7X9Gtf//5h+kRP+s6VRLySvpd3kiGV8hO5zpVI/JK+t/Rrn/fVd65k4pX0vbyTDJ70nSuZnJK+pHGSXpC0WtK0Ltb5UsYk03dkLN8VTR69VNJeE6rnJV3e6ZiG19WiVArefhvefbfSkThXc3ocZVNSHXATcCbQBiyW1GJmKzPWGQlcCYw1s62SDs54iQ/M7LjiRBuFu3t3aPW72pTZbXN09lzlzrlC5NLSPwlYbWZrzGwHMA+YkLXOJcBNZrYVPpxNqPjSid5LPLXN++o7VzK5JP1hQOZ/X1u0LNNRwFGS/iBpkaRxGc/1l9QaLT+3sx1ImhKt07px48auI0m39L0HT23zpO9cyRRrEpW+wEjgdKABeFLSMWb2FjDczNZKOgJ4TNJyM3s5c2Mzmw3MBmhubu66YJ9O+t7Sr22HHw6SJ33nSiCXlv5aIJXxuCFalqkNaDGznWb2CvAi4UsgcwLpNcATwPG9jtbLO8lQXw+HHeZJ37kSyCXpLwZGShohaR9gIpDdC+cBQisfSUMI5Z41kgZL6pexfCywkt7yln5yeLdN50qix6RvZu3ApcACYBVwt5mtkDRD0vhotQXAZkkrgceB75rZZmAU0Crpj9Hy6zN7/eTNa/rJ4UnfuZLIqaZvZvOB+VnLpmfcN+Bb0S1znaeBYwoPM+LlneRIpWD+/HBNhrqdv9w5l4d4XZHr5Z3kSKXC7Flbt1Y6EudqSjyTvpd3ap9323SuJOKV9L28kxwNDeGnj7bpXFHFK+l7eSc5vKXvXEnEM+l7eaf2HXpo+Ht70neuqOKZ9L2lX/vq6sKVuZ70nSuqeCV9r+kni/fVd67o4pX0vbyTLJ70nSu6eCZ9b+knQ3quXJ80x7miiVfS9/JOsqRSsH07dDfctnMuL/FK+l7eSRbvtulc0cUz6XtLPxk86TtXdPFK+l7eSRZP+s4VXbySvpd3kmXoUOjXz5O+c0UUz6TvLf1kkMIYPJ70nSuaeCV9L+8kTwn76ktKSXpc0kpJKyRd1sk6kyQtk7Rc0tOSjs14bpykFyStljStJEE6V2TxSvre0k+edF/90mgHvm1mo4GTgamSRmet8wpwmpkdA1wHzAaQVAfcBHwGGA2c38m2zlWdeCZ9r+knR0MDrF1bkr+5ma03s+ej++8SpgMdlrXO02aWnsllERCN+cxJwGozW2NmO4B5wISiB+lckeWU9HM5jJX0pYzD5Dsyll8o6aXodmFB0Xp5J3lSqfD3fvPNku5GUhNwPPBsN6tdDPw2uj8MyKw7tZH1hRG97hRJrZJaN/pFZq4K9DhHbsZh7JmED/ZiSS2ZE5xLGglcCYw1s62SDo6WHwhcAzQDBiyJtu3dHHhe3kmezG6bhx9ekl1IGgjcC1xuZu90sc4ZhKR/Sj6vbWaziUpCzc3NPp6Eq7hcWvq5HMZeAtyUTuZmtiFafjaw0My2RM8tBMb1Olov7yRPifvqS6onJPy5ZnZfF+uMAW4DJpjZ5mjxWiCVsVpDtMy5qpZL0s/lMPYo4ChJf5C0SNK4PLbN/RDYyzvJU8KkL0nA7cAqM5vVxTqNwH3ABWb2YsZTi4GRkkZI2geYCLQUPUjniqzH8k4erzMSOJ3Q4nlS0jG5bpzzIbCXd5Jn8GAYMKBULf2xwAXAcklLo2XfBxoBzOwWYDpwEHBz+I6g3cyazaxd0qXAAqAOmGNmK0oRpHPFlEvSz+Uwtg141sx2Aq9IepHwJbCW8EWQue0TvQ3WyzsJJJWsr76ZPQWoh3UmA5O7eG4+ML/ogTlXQrmUd3I5jH2AKLlLGkIo96whtILOkjRY0mDgrGhZ73hLP5l8MhXniqbHpG9m7UD6MHYVcLeZrZA0Q9L4aLUFwGZJK4HHge+a2WYz20K4oGVxdJsRLesdr+knkyd954omp5p+Z4exZjY9474B34pu2dvOAeYUFmYknfS9vJMsqRSsXw87d0J9faWjcS7W4nVFrhQSv7f0kyWVClMmrltX6Uici71i9d4pH0/6yZPZbXP48MrGUgI/eGgFK9d1ek2Yc3sYffh+XPP5jxf0GvFq6UM4mevlnWTxyVScK5r4tfT79vWWftLUeNIvtOXmXD7i19L38k7yDBoE++1XyiGWnUuM+CV9L+8kk3fbdK4o4pn0vaWfPJ70nSuK+CV9L+8kkyd954oifknfyzvJlErBhg2wfXulI3Eu1uKZ9L2lnzzpHjx+Mte5gsQv6Xt5J5lqvNumc+USv6TvLf1k8qTvXFHEM+l7TT95GhrCT0/6zhUkfknfyzvJNGAAHHSQJ33nChS/pO/lneTybpvOFSyeSd/LO8nkSd+5gsUz6XtLP5k86TtXsPglfa/pJ1cqBVu3wnvvVToS52Irp6QvaZykFyStljStk+cvkrRR0tLoNjnjuV0Zy7MnVM+fl3eSyy/Qcq5gPY6nL6kOuAk4E2gDFktqMbOVWaveZWaXdvISH5jZcQVHmublneTK7Lb5sY9VNhbnYiqXlv5JwGozW2NmO4B5wITShtUNL+8kl1+g5VzBckn6w4DM/7K2aFm28yQtk3SPpFTG8v6SWiUtknRuZzuQNCVap3Xjxo3dR+PlneQaFn3sPOk712vFOpH7ENBkZmOAhcCvMp4bbmbNwJeBGyUdmb2xmc02s2Yzax46dGj3e/LyTnL16weHHOJJ37kC5JL01wKZLfeGaNmHzGyzmaXHvL0N+GTGc2ujn2uAJ4DjC4jXyztJ5902nStILkl/MTBS0ghJ+wATgT164Ug6LOPheGBVtHywpH7R/SHAWCD7BHB+vLyTbJ70nStIj713zKxd0qXAAqAOmGNmKyTNAFrNrAX4pqTxQDuwBbgo2nwUcKuk3YQvmOs76fWTZ8Re3km0VAp+97tKR+FcbPWY9AHMbD4wP2vZ9Iz7VwJXdrLd08AxBca4Jy/vJFsqBe++C2+/DfvvX+lonIud+F2R6+WdZPNum84VJJ5J31v6yeVJ37mCxC/pe3kn2TzpO1eQ+CV9b+kn22GHQZ8+nvSd66V4Jn2v6SdX375w+OGe9J3rpfglfS/vOO+r71yvxS/pe3nHpVIFD68sKSXpcUkrJa2QdFkn6xwt6RlJ2yV9J+u5VyUtj4YMby0oGOfKKKd++lWlb18wg927Q23XJU9DAzz0UPgcSL19lXbg22b2vKRBwBJJC7MuHtwCfBM4t4vXOMPMNvU2AOcqIX5Zs2/0PeV1/eRKpeCDD2DLll6/hJmtN7Pno/vvEoYOGZa1zgYzWwzsLCRc56pJ/JJ+XV346SWe5Cpyt01JTYSBAJ/NYzMDHpW0RNKUbl4792HDnSuD+CV9b+m7IiZ9SQOBe4HLzeydPDY9xcxOAD4DTJV0amcr5TVsuHNlEN+k7y395CpS0pdUT0j4c83svny2zRgyfANwP2GGOeeqXvySvpd33CGHQH19QUlfkoDbgVVmNivPbfeNTv4iaV/gLOBPvQ7GuTKKZ+8d8PJOkvXpE6ZOLKylPxa4AFguaWm07PtAI4CZ3SLpUKAV2A/YLelyYDQwBLg/fG/QF7jDzB4pJBjnyiW+Sd9b+slW4AVaZvYU0G1/TzP7H8JMcdneAY7t9c6dqyAv77h48qtyneuV+CV9L+846Lgqd/fuSkfiXKzEN+l7Sz/ZUinYuRM2bKh0JM7FSk5JX9I4SS9IWi1pWifPXyRpYzQOyVJJkzOeu1DSS9HtwoIj9vKOAx9X37le6vFErqQ64CbgTKANWCyppZMJzu8ys0uztj0QuAZoJlzBuCTadmvvI/byjmPPpH/iiZWNxbkYyaWlfxKw2szWmNkOYB4wIcfXPxtYaGZbokS/EBjXu1AjXt5x0JH0Cxxt07mkySXpDwMyj6HbyBqYKnKepGWS7pGUymfbvMYn8fKOAzjoIOjf38s7zuWpWCdyHwKazGwMoTX/q3w2zmt8Em/pOwhDKjc0eNJ3Lk+5JP21QCrjcUO07ENmttnMtkcPbwM+meu2efOavkvzvvrO5S2XpL8YGClphKR9gIlAS+YKkg7LeDieMDY5wALgLEmDJQ0mjFGyoKCIvbzj0jzpO5e3HnvvmFm7pEsJyboOmGNmKyTNAFrNrAX4pqTxhNmItgAXRdtukXQd4YsDYIaZ9X7mC/DyjuuQSsG6deGoL90YcM51K6exd8xsPjA/a9n0jPtXAld2se0cYE4BMe7JyzsuLZUKn4P160N93znXI78i18WXX6DlXN7il/S9pu/SPOk7l7f4Jf0F0XngL3wBmppg7tyKhuMqyJO+c3mLV9KfOxdmzAj3zeC112DKFE/8SbX//jBwoCd95/IQr6R/1VWwbduey95/Pyx3ySN5t03n8hSvpP/6650vf+01uO46WL48HAG45PCk71xe4pX0Gxs7X77PPnDNNTBmDBx5JFxxBTzxhJ/sTQJP+s7lJV5Jf+ZMGDBgz2UDBsCcOeEinV/8AkaPhp//HM44Aw45BC68EO67D957rzIxu9JKpeDNN2HHjkpH4lwsxCvpT5oEs2fD8OGhnjt8eHg8aRIceihMngy/+Q1s2gT33guf+1x4fN55YVTGz38ebrstJAlXG1KpUNJbt67SkTgXCzldkVtVJk0Kt+4MHAhf/GK4tbfDU0/Bgw+G229+E74wTj4ZJkyAc8+Fj32sLKG7EkhfifvGG6ELr3OuW/Fq6fdG375w+unw05/Cyy/DH/8IP/hBKAdMmwZHHx1u3/sePP20T7QdN95X37m81H7SzySFk71XXw2traE30M9+Fk4Qz5oFY8fC4YfDJZeEI4IPPqh0xK4nnvSdy0uykn62VAqmToVHHw3nAe68MxwV3H13qP8PGRLOB/z617B5c6WjdZ0ZOBAOOMCTvnM5il9Nv1T23x8mTgy3HTtCl8/0eYD77gtj/pxySjgHMGECjBhR6YhdmnfbdC5nyW7pd2WffeCss+Cmm0IyWbwYrrwStmwJ1wAccURHmWjJEr8grNI86TuXM0/6PZGguTlc8btsWTgZPGsWHHgg/NM/hecaGzvKRN5fvPw86TuXM0/6+TriiI4rft98E/7t3+DEE8PPs8+GoUPh/PNh3jx4++0KB5sQqVQ4J+Mn3p3rkSf9QgwZ0nHF76ZN8NBD8Dd/A489FhL/0KHhi+Dmm6GtrdLR1q50Dx5/j53rUU5JX9I4SS9IWi1pWjfrnSfJJDVHj5skfSBpaXS7pViBV52PfCRcAXzbbeHq0D/8IRwRvPpqKP2kUqEU9MMf+sBwxebdNp3LWY9JX1IdcBPwGWA0cL6k0Z2sNwi4DHg266mXzey46Pa1IsRc/erq4C/+Am64AV54AVatguuvDyeIp0/3geGKzZO+cznLpaV/ErDazNaY2Q5gHjChk/WuA24AtnXyXLJlXvG7bl0YL8gHhiuezKEYnHPdyiXpDwMy/5vaomUfknQCkDKzhzvZfoSk/5L0n5I+1dkOJE2R1CqpdePGjbnGHk+HHtpxxe+mTXDPPfDZz4bzAT4wXO/07x/On3jSd65HBV+cJakPMAu4qJOn1wONZrZZ0ieBByR93MzeyVzJzGYDswGam5uTU+weODAk+vPO6xgY7oEHfGC43kil/ESucznIpaW/FkhlPG6IlqUNAj4BPCHpVeBkoEVSs5ltN7PNAGa2BHgZOKoYgdec9MBwN94Ia9b4wHD58r76zuUkl6S/GBgpaYSkfYCJQEv6STN728yGmFmTmTUBi4DxZtYqaWh0IhhJRwAjgTVF/y1qjQ8Ml7+GhryTvqSUpMclrZS0QtJlnaxztKRnJG2X9J2s53Lq1eZcNekx6ZtZO3ApsABYBdxtZiskzZA0vofNTwWWSVoK3AN8zcy2FBhz8mQODLdxI9xxRzgquOsuHxguLZWCt96C//3ffLZqB75tZqMJR6hTO+mZtgX4JvAvmQtz7dXmXLXJqaZvZvOB+VnLpnex7ukZ9+8F7i0gPpftgAPChV/nn98xMNwDD0BLS7IHhsvstjlqVE6bmNl6wnknzOxdSasInRRWZqyzAdgg6bNZm3/Yqw1AUrpX20qcq2J+RW6cpQeGu/nmjoHhpk0Lrf2kDQxXYF99SU3A8ex9nUlXeuzV5lw18qRfK9IDw6Wv+F29OtT/Bw9OxsBwBSR9SQMJR6SXZ/csK1SiuiO7WPCkX6vSV/z+538mY2C4YcPCF1/+J3PrCQl/rpndl8emPfVqA0J3ZDNrNrPmoUOH5hWbc6XgST8JsgeGa2mpvYHh6uvDhW95JH1JAm4HVpnZrDz32G2vNueqlc+clTQf+Ujo8fP5z8OuXbBoUccMYVOnhtsnP9lxIvgTnwgt6DjIv6/+WOACYHnUwwzg+0AjgJndIulQoBXYD9gt6XJgtJm9Iyndq60OmGNmK4ryezhXQrIqO7nX3Nxsra2tlQ4jmf77vzuuCF60KCwbMaLjiuCxY8NFZNXqr/8aVqwIA9x1Q9ISM2suU1Qf8s+2K6VcP9de3nEdjj469P555hlYvz4MDDdqVBgY7vTTq39guHRLv8oaMs5VE0/6rnPpgeEefrjzgeGGDKm+geFSqfBl9NZblY7EuapVxcfqrmpkDgy3c2cYGC59HiA9MNyf/3koA02YULmB4TK7bQ4eXJkYnKty3tJ3+amvD3MApAeGW7oUrr0Wtm0Lg8GlB4ZLl4nKOTCcT5voXI886bvek+DYY8NsYEuWwGuvwb/+a0i+P/lJmD0sPTDcww+HL4ZS8hm0nOuRJ31XPI2NcOmlsHBhx8Bwp50WBob73OdKPzDcoYeGsYc86TvXJa/pu9LIHBhu+/YwMFz6PEB6YLhPfarjPEAxBoarqwtHFp70neuSt/Rd6fXr13HF7xtvwHPPhZr/pk17DgyXLhMV0uXSJ1Nxrlue9F159ekTxgDKHBjuJz8JvW1mztxzYLiFC/MfGM6TvnPd8qTvKuvII+Fb3+oYGO6XvwyJ/5e/DMNG5zswXHquXL9Ay7lOedJ31WPIELjoIrj//nCit6UlDK3w+9/nPjBcKhV6CW3aVNbQnYsLT/quOqUHhrv99jAkxFNPweWXwyuvhNJPKrXn/AHplv1vfxt+HnxwGCfo61+v2K/gXDXKKennOgG0pPMkmaTmjGVXRtu9IOnsYgTtEqauLgz29qMfwQsvwMqV8M//HC4Uu/rqcBL4yCPDNQOPPNKx3a5dYdwgT/zOfajHpJ/rBNCSBgGXkTHdXLTeRODjwDjg5uj1nOsdKQwCl77id906uPXWsGzZss63mT27vDE6V8Vyael/OAG0me0A0hNAZ7sOuAHIvOxyAjDPzLab2SvA6uj1nCuOww6DKVPCFb9d2bWrfPE4V+VySfo9TgAt6QQgZWbZ/3k5TR7t84i6oqjr4iCyq+XOJVDBJ3Il9QFmAd/u7Wv4PKKuKKZMyW+5cwmUyzAMPU0APQj4BPBEmHKUQ4EWSeNz2Na54rn55vBz9uxQ0qmrCwk/vdw5l1NLv9sJoM3sbTMbYmZNZtYELALGm1lrtN5ESf0kjQBGAs8V/bdwLu3mm6G9PXThbG/3hO9clh5b+mbW3tkE0JJmAK1m1tLNtisk3Q2sBNqBqWbmZ9Wcc65Cchpl08zmA/Ozlk3vYt3Tsx7PBGb2Mj7nnHNF5FfkOudcgnjSd865BPGk75xzCSKrsiFoJW0EXivxboYAlR6GsdIxVHr/lYxhuJmV/YKQHj7b1fD3SPNY9lYtcUDXseT0ua66pF8OklrNrLnnNWs3hkrvv1piqBbV9F54LNUbBxQei5d3nHMuQTzpO+dcgiQ16VfDWLuVjqHS+4fqiKFaVNN74bHsrVrigAJjSWRN3znnkiqpLX3nnEskT/rOOZcgNZ30e5rbV9K3JK2UtEzS7yUNL+f+M9bba27hcsYg6UvR+7BC0h3ljkFSo6THJf1X9Lc4p9gxVKtcPyMl3P+rkpZLWiqpNVp2oKSFkl6Kfg4u0b7nSNog6U8Zyzrdt4L/F71Py6KJm0ody7WS1kbvzdLMz2Wp5v6WlIr+F9L/j5dFy4v3vphZTd4II4K+DBwB7AP8ERidtc4ZwIDo/j8Ad5Vz/9F6g4AnCUNSN1fgPRgJ/BcwOHp8cAVimA38Q3R/NPBqpT8/5bjl+hkpcQyvAkOylv0ImBbdnwbcUKJ9nwqcAPypp30D5wC/BQScDDxbhliuBb7Tybqjo79VP2BE9DesK1IchwEnRPcHAS9G+yva+1LLLf0e5/Y1s8fN7P3o4SLCJC9l23+ks7mFyxnDJcBNZrYVwMw2VCAGA/aL7u8PrCtyDNUq189IuU0AfhXd/xVwbil2YmZPAlty3PcE4NcWLAIOkHRYiWPpSsnm/jaz9Wb2fHT/XWAVYYrZor0vtZz0c5qfN8PFhG/Msu2/m7mFyxYDcBRwlKQ/SFokaVwFYrgW+DtJbYQhvL9R5BiqVb6f0VIw4FFJSySl55U8xMzWR/f/BzikjPF0te9KvVeXRmWTORllrrLEIqkJOB54liK+L7Wc9HMm6e+AZuDHZdxnwXMLF0lfQonndOB84BeSDihzDOcD/2ZmDYTD1X+P3h9XeqeY2QnAZ4Cpkk7NfNJCDaEi/borue/Iz4EjgeOA9cBPyrVjSQOBe4HLzeydzOcKfV9q+R8rp/l5JX0auIowxeP2Mu4/c27hVwn1uJYin8zN5T1oA1rMbGd0qPoi4UugnDFcDNwNYGbPAP0Jg0rVuorPIW1ma6OfG4D7CWWKN9MlguhnsUt+3elq32V/r8zsTTPbZWa7gV/QUcIpaSyS6gkJf66Z3RctLtr7UstJv9u5fQEkHQ/cSkj4xf5gFzK3cFliiDxAaOUjaQih3LOmzDG8DvxVFMMoQtLfWMQYqlUu703JSNpX0qD0feAs4E9RDBdGq10IPFiumLrZdwvw91FvlZOBtzPKHSWRVRv/AuG9ScdSkrm/JQm4HVhlZrMynire+1LMM+DVdiOUCl4knF2/Klo2g5BcAX4HvAksjW4t5dx/1rpPUOTeOzm+ByKUmVYCy4GJFYhhNPAHQo+IpcBZlf7sVPIzWsZ9HxG9538EVmT8bQ4Cfg+8FP2PHFii/d9JKJvsJBxxXtzVvqPP6U3R+7S82P8rXcTy79G+lhGS62EZ618VxfIC8JkixnEKoXSzLCMvnVPM98WHYXDOuQSp5fKOc865LJ70nXMuQTzpO+dcgnjSd865BPGk75xzCeJJ3znnEsSTvnPOJcj/B+LblGh92eXfAAAAAElFTkSuQmCC\n", - "text/plain": [ - "<Figure size 432x288 with 2 Axes>" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "fig, ax = plt.subplots(1, 2)\n", "best_points_ = np.concatenate([best_x, [best_x[0]]])\n", |
