diff options
| author | Mitsuo Tokumori <[email protected]> | 2022-05-05 22:39:23 -0500 |
|---|---|---|
| committer | Mitsuo Tokumori <[email protected]> | 2022-05-05 22:39:23 -0500 |
| commit | 76292bcc75723ad0e31be0c066800d792de8d720 (patch) | |
| tree | 50474de940b540f526f1c5fafd2460d59c872be7 /test/GA.ipynb | |
| parent | 400b19e25d10443d802bcf2355c8dfd392297894 (diff) | |
| download | DP1_project-76292bcc75723ad0e31be0c066800d792de8d720.tar.gz DP1_project-76292bcc75723ad0e31be0c066800d792de8d720.tar.bz2 DP1_project-76292bcc75723ad0e31be0c066800d792de8d720.zip | |
Clear clutter. No more test/data/ directory
Diffstat (limited to 'test/GA.ipynb')
| -rw-r--r-- | test/GA.ipynb | 361 |
1 files changed, 0 insertions, 361 deletions
diff --git a/test/GA.ipynb b/test/GA.ipynb deleted file mode 100644 index 9d73164..0000000 --- a/test/GA.ipynb +++ /dev/null @@ -1,361 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "2fd45b3a-9a24-4782-812c-08223edb750e", - "metadata": {}, - "source": [ - "# Prueba del algoritmo genetico" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "45972b70-b2a6-48f2-aafa-9f660548079a", - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import random" - ] - }, - { - "cell_type": "markdown", - "id": "34eab22f-a400-4a14-9ac4-047d87dff69f", - "metadata": {}, - "source": [ - "Data" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "id": "a5736dba-4c38-4b7f-9a1a-963bdb006236", - "metadata": {}, - "outputs": [], - "source": [ - "class Ciudad:\n", - " regiones = {\n", - " 'costa': {\n", - " 'plazoentrega': 1\n", - " },\n", - " 'sierra': {\n", - " 'plazoentrega': 2\n", - " },\n", - " 'selva': {\n", - " 'plazoentrega': 3\n", - " }\n", - " }\n", - " def __init__(self, nombre, region, longitud, latitud):\n", - " self.nombre = nombre\n", - " self.region = region\n", - " self.x = longitud\n", - " self.y = latitud" - ] - }, - { - "cell_type": "code", - "execution_count": 101, - "id": "8ee9610f-d128-4d1b-9458-ca9048073f20", - "metadata": {}, - "outputs": [], - "source": [ - "class Road_network:\n", - " def __init__(self, cities, distances):\n", - " \"\"\"Grafo completo del pais\n", - " \n", - " Params\n", - " ------\n", - " \n", - " cities: list\n", - " Lista de objetos Ciudad\n", - " \n", - " routes: dict\n", - " (Aun no se como implementar esto)\n", - " \"\"\"\n", - " \n", - " self.cities = cities\n", - " self.routes = {}" - ] - }, - { - "cell_type": "code", - "execution_count": 102, - "id": "7dd72c93-acba-46f9-ac99-8c3d1a8cfa67", - "metadata": {}, - "outputs": [], - "source": [ - "class Vehiculo:\n", - " tipos = {\n", - " 1: {\n", - " 'cargamax': 50\n", - " },\n", - " 2: {\n", - " 'cargamax': 100\n", - " },\n", - " 3: {\n", - " 'cargamax': 200\n", - " }\n", - " }\n", - " \n", - " def __init__(self):\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 96, - "id": "474a3596-f75d-411e-bf4c-20b8b8259434", - "metadata": {}, - "outputs": [], - "source": [ - "class Pedido:\n", - " def __init__(self, cliente, cantidad):\n", - " self.cliente = cliente\n", - " self.cantidad = cantidad" - ] - }, - { - "cell_type": "code", - "execution_count": 98, - "id": "7602722f-9026-44dc-b922-e17a7d3af45b", - "metadata": {}, - "outputs": [], - "source": [ - "class Cliente:\n", - " def __init__(self, nombre, ciudad):\n", - " self.nombre = nombre\n", - " self.ciudad = ciudad" - ] - }, - { - "cell_type": "code", - "execution_count": 100, - "id": "f6b4829a-9001-410c-b20c-01c65c777d8a", - "metadata": {}, - "outputs": [], - "source": [ - "class VRP:\n", - " def __init__(self):\n", - " # Conjuntos\n", - " self.I = range(2)\n", - " self.J = range(3)\n", - " self.T = range(5) # en horas\n", - " self.V = range(3) # 3 tipos de vehiculos\n", - " \n", - " def init_data(self):\n", - " \"\"\"\n", - " Lista los parametros iniciales, definidos en \"Modelo Matematico\" en ISA v02\n", - " \n", - " i: almacen grande (depot)\n", - " j: almacen pequeño (customer)\n", - " v: tipo de vehiculo\n", - " t: tiempo\n", - " \"\"\"\n", - " # Parametros\n", - " # Nombres cortos confunden, pero matrices de varias dimensiones \n", - " # sin etiquetas confunden mas\n", - " \n", - " # Demanda\n", - " self.D_jt = [ [ random.choice([0,1,2,3]) for _ in self.I ] for _ in self.T ]\n", - " # Capacidades de vehiculos\n", - " self.VL_v = [ random.choice([10, 15, 20]) for _ in self.V ]\n", - " # distancia entre almacen i, j\n", - " self.d_ij = [ random.choice([25,50,100]) for _ in self.V ]\n", - " #self.r_ijvt = [ [ 0 for _ in self.V ] for " - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "id": "ab559513-5c14-4dd2-a51d-7737114dfba1", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([10, 10, 15])" - ] - }, - "execution_count": 82, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "p = VRP()\n", - "p.init_data()\n", - "np.array(p.VL_v)" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "id": "2c3c85e0-a90c-4fda-86f7-778d7328c74d", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[25, 50, 50]" - ] - }, - "execution_count": 83, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "p.d_ij" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "511ff788-0d1a-4ac7-9575-de182d236574", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "078280b5-70ef-4691-8798-a686d85d188c", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "611c9a0d-bb1a-48eb-af37-f033abe8ed66", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "64c68216-b9f1-45f9-a0fe-3862ab106c24", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9cb6bb08-1547-4b64-993f-b2c453535264", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b83d9e98-db8f-45cd-9eff-07d4194f7e07", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b8c06031-9c55-4e13-a27b-91b0886902e6", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e9483c22-243f-44e5-9a6d-09da92354554", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "12952643-4a10-40bf-8af3-41319c744732", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b0306c4f-eb68-4009-9390-0f881c6a8cb4", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b3ad92de-b2ed-4f21-a696-1fa2981f89dc", - "metadata": {}, - "outputs": [], - "source": [ - "def genetic_algorithm(population, fitness_fn, ngen=100, pmut=0.1):\n", - " \"Algoritmo Genetico \"\n", - " \n", - " popsize = len(population)\n", - " evaluate_population(population, fitness_fn) # evalua la poblacion inicial\n", - " ibest = sorted(range(len(population)), key=lambda i: population[i].fitness, reverse=True)[:1]\n", - " bestfitness = [population[ibest[0]].fitness]\n", - " print(\"Poblacion inicial, best_fitness = {}\".format(population[ibest[0]].fitness))\n", - " \n", - " for g in range(ngen): # Por cada generacion\n", - " \n", - " ## Selecciona las parejas de padres para cruzamiento \n", - " mating_pool = []\n", - " for i in range(int(popsize/2)): mating_pool.append(select_parents_roulette(population)) \n", - " \n", - " ## Crea la poblacion descendencia cruzando las parejas del mating pool con Recombinación de 1 punto\n", - " offspring_population = []\n", - " for i in range(len(mating_pool)): \n", - " #offspring_population.extend( mating_pool[i][0].crossover_onepoint(mating_pool[i][1]) )\n", - " offspring_population.extend( mating_pool[i][0].crossover_uniform(mating_pool[i][1]) )\n", - "\n", - " ## Aplica el operador de mutacion con probabilidad pmut en cada hijo generado\n", - " for i in range(len(offspring_population)):\n", - " if random.uniform(0, 1) < pmut: \n", - " offspring_population[i] = offspring_population[i].mutate_position()\n", - " \n", - " ## Evalua la poblacion descendencia\n", - " evaluate_population(offspring_population, fitness_fn) # evalua la poblacion inicial\n", - " \n", - " ## Selecciona popsize individuos para la sgte. generación de la union de la pob. actual y pob. descendencia\n", - " population = select_survivors(population, offspring_population, popsize)\n", - "\n", - " ## Almacena la historia del fitness del mejor individuo\n", - " ibest = sorted(range(len(population)), key=lambda i: population[i].fitness, reverse=True)[:1]\n", - " bestfitness.append(population[ibest[0]].fitness)\n", - " print(\"generacion {}, best_fitness = {}\".format(g, population[ibest[0]].fitness))\n", - " \n", - " return population[ibest[0]], bestfitness " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.2" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} |
