summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDayana31 <[email protected]>2022-04-19 22:44:05 -0500
committerDayana31 <[email protected]>2022-04-19 22:44:05 -0500
commit91140b24f0d49a9f89a080ee063e9eb023a4b73a (patch)
tree02511b2ca8170cb7865b052926a8d6a59d3f90ab
parent09f053f4aa1aae5a2b3b454f54944961194336d3 (diff)
parent98c6b3545bff966e8a2d28427e49234bea8ad716 (diff)
downloadDP1_project-91140b24f0d49a9f89a080ee063e9eb023a4b73a.tar.gz
DP1_project-91140b24f0d49a9f89a080ee063e9eb023a4b73a.tar.bz2
DP1_project-91140b24f0d49a9f89a080ee063e9eb023a4b73a.zip
Merge branch 'develop' into dayana
-rw-r--r--.gitignore22
-rw-r--r--test/GA.ipynb257
-rw-r--r--test/VRPTW_GA.ipynb724
-rw-r--r--test/data/RC101.csv102
4 files changed, 1098 insertions, 7 deletions
diff --git a/.gitignore b/.gitignore
index 849623f..d69fa8b 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,3 +1,19 @@
-/VRP/nbproject/private/
-/VRP/build/
-/VRP/dist/
+# Jupyter
+.ipynb_checkpoints
+
+# Java
+*.class
+*.log
+*.ctxt
+.mtj.tmp/
+*.jar
+*.war
+*.nar
+*.ear
+*.zip
+*.tar.gz
+*.rar
+hs_err_pid*
+replay_pid*
+
+# JS
diff --git a/test/GA.ipynb b/test/GA.ipynb
index bab966d..9d73164 100644
--- a/test/GA.ipynb
+++ b/test/GA.ipynb
@@ -10,16 +10,217 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 21,
+ "id": "45972b70-b2a6-48f2-aafa-9f660548079a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import random"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "34eab22f-a400-4a14-9ac4-047d87dff69f",
+ "metadata": {},
+ "source": [
+ "Data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 97,
+ "id": "a5736dba-4c38-4b7f-9a1a-963bdb006236",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class Ciudad:\n",
+ " regiones = {\n",
+ " 'costa': {\n",
+ " 'plazoentrega': 1\n",
+ " },\n",
+ " 'sierra': {\n",
+ " 'plazoentrega': 2\n",
+ " },\n",
+ " 'selva': {\n",
+ " 'plazoentrega': 3\n",
+ " }\n",
+ " }\n",
+ " def __init__(self, nombre, region, longitud, latitud):\n",
+ " self.nombre = nombre\n",
+ " self.region = region\n",
+ " self.x = longitud\n",
+ " self.y = latitud"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 101,
+ "id": "8ee9610f-d128-4d1b-9458-ca9048073f20",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class Road_network:\n",
+ " def __init__(self, cities, distances):\n",
+ " \"\"\"Grafo completo del pais\n",
+ " \n",
+ " Params\n",
+ " ------\n",
+ " \n",
+ " cities: list\n",
+ " Lista de objetos Ciudad\n",
+ " \n",
+ " routes: dict\n",
+ " (Aun no se como implementar esto)\n",
+ " \"\"\"\n",
+ " \n",
+ " self.cities = cities\n",
+ " self.routes = {}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 102,
+ "id": "7dd72c93-acba-46f9-ac99-8c3d1a8cfa67",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class Vehiculo:\n",
+ " tipos = {\n",
+ " 1: {\n",
+ " 'cargamax': 50\n",
+ " },\n",
+ " 2: {\n",
+ " 'cargamax': 100\n",
+ " },\n",
+ " 3: {\n",
+ " 'cargamax': 200\n",
+ " }\n",
+ " }\n",
+ " \n",
+ " def __init__(self):\n",
+ " pass"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 96,
+ "id": "474a3596-f75d-411e-bf4c-20b8b8259434",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class Pedido:\n",
+ " def __init__(self, cliente, cantidad):\n",
+ " self.cliente = cliente\n",
+ " self.cantidad = cantidad"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 98,
+ "id": "7602722f-9026-44dc-b922-e17a7d3af45b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class Cliente:\n",
+ " def __init__(self, nombre, ciudad):\n",
+ " self.nombre = nombre\n",
+ " self.ciudad = ciudad"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 100,
"id": "f6b4829a-9001-410c-b20c-01c65c777d8a",
"metadata": {},
"outputs": [],
+ "source": [
+ "class VRP:\n",
+ " def __init__(self):\n",
+ " # Conjuntos\n",
+ " self.I = range(2)\n",
+ " self.J = range(3)\n",
+ " self.T = range(5) # en horas\n",
+ " self.V = range(3) # 3 tipos de vehiculos\n",
+ " \n",
+ " def init_data(self):\n",
+ " \"\"\"\n",
+ " Lista los parametros iniciales, definidos en \"Modelo Matematico\" en ISA v02\n",
+ " \n",
+ " i: almacen grande (depot)\n",
+ " j: almacen pequeño (customer)\n",
+ " v: tipo de vehiculo\n",
+ " t: tiempo\n",
+ " \"\"\"\n",
+ " # Parametros\n",
+ " # Nombres cortos confunden, pero matrices de varias dimensiones \n",
+ " # sin etiquetas confunden mas\n",
+ " \n",
+ " # Demanda\n",
+ " self.D_jt = [ [ random.choice([0,1,2,3]) for _ in self.I ] for _ in self.T ]\n",
+ " # Capacidades de vehiculos\n",
+ " self.VL_v = [ random.choice([10, 15, 20]) for _ in self.V ]\n",
+ " # distancia entre almacen i, j\n",
+ " self.d_ij = [ random.choice([25,50,100]) for _ in self.V ]\n",
+ " #self.r_ijvt = [ [ 0 for _ in self.V ] for "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 82,
+ "id": "ab559513-5c14-4dd2-a51d-7737114dfba1",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([10, 10, 15])"
+ ]
+ },
+ "execution_count": 82,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "p = VRP()\n",
+ "p.init_data()\n",
+ "np.array(p.VL_v)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 83,
+ "id": "2c3c85e0-a90c-4fda-86f7-778d7328c74d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[25, 50, 50]"
+ ]
+ },
+ "execution_count": 83,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "p.d_ij"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "511ff788-0d1a-4ac7-9575-de182d236574",
+ "metadata": {},
+ "outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
- "id": "2c3c85e0-a90c-4fda-86f7-778d7328c74d",
+ "id": "078280b5-70ef-4691-8798-a686d85d188c",
"metadata": {},
"outputs": [],
"source": []
@@ -27,7 +228,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "511ff788-0d1a-4ac7-9575-de182d236574",
+ "id": "611c9a0d-bb1a-48eb-af37-f033abe8ed66",
"metadata": {},
"outputs": [],
"source": []
@@ -35,7 +236,55 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "078280b5-70ef-4691-8798-a686d85d188c",
+ "id": "64c68216-b9f1-45f9-a0fe-3862ab106c24",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9cb6bb08-1547-4b64-993f-b2c453535264",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b83d9e98-db8f-45cd-9eff-07d4194f7e07",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b8c06031-9c55-4e13-a27b-91b0886902e6",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e9483c22-243f-44e5-9a6d-09da92354554",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "12952643-4a10-40bf-8af3-41319c744732",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b0306c4f-eb68-4009-9390-0f881c6a8cb4",
"metadata": {},
"outputs": [],
"source": []
diff --git a/test/VRPTW_GA.ipynb b/test/VRPTW_GA.ipynb
new file mode 100644
index 0000000..042836e
--- /dev/null
+++ b/test/VRPTW_GA.ipynb
@@ -0,0 +1,724 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# APLICACIONES EN CIENCIAS DE COMPUTACION\n",
+ "Dr. Edwin Villanueva"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "tags": []
+ },
+ "source": [
+ "## Algoritmo genetico para resolver el VRPTW\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 140,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import random\n",
+ "import matplotlib.pyplot as plt\n",
+ "import csv"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<b>Clase abstracta de un individuo de algoritmo genético</b>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class Individual:\n",
+ " \"Clase abstracta para individuos de un algoritmo evolutivo.\"\n",
+ "\n",
+ " def __init__(self, chromosome):\n",
+ " self.chromosome = chromosome\n",
+ "\n",
+ " def crossover(self, other):\n",
+ " \"Retorna un nuevo individuo cruzando self y other.\"\n",
+ " raise NotImplementedError\n",
+ " \n",
+ " def mutate(self):\n",
+ " \"Cambia los valores de algunos genes.\"\n",
+ " raise NotImplementedError "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<b>Clase concreta de un individuo del problema de las n-reinas</b>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 105,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class Individual_VRPTW(Individual):\n",
+ " \"Clase que implementa el individuo en VRPTW.\"\n",
+ "\n",
+ " def __init__(self, chromosome):\n",
+ " self.chromosome = chromosome[:]\n",
+ " self.fitness = -1\n",
+ " \n",
+ " def crossover_order(self, other):\n",
+ " \"\"\"\n",
+ " Copies a part of the child chromosome from the first parent and constructs \n",
+ " the remaining part by following the vertex ordering in the second parent\n",
+ " \"\"\"\n",
+ " cut_point1 = random.randrange(0, len(self.chromosome) + 1)\n",
+ " cut_point2 = random.randrange(cut_point1, len(self.chromosome) + 1)\n",
+ " \n",
+ " c1 = self.chromosome[:]\n",
+ " c2 = other.chromosome[:]\n",
+ " p1_rem = self.chromosome[:cut_point1] + self.chromosome[cut_point2:]\n",
+ " p2_rem = other.chromosome[:cut_point1] + other.chromosome[cut_point2:]\n",
+ " # Change the genes in the remaining part of the child...\n",
+ " for i in range(len(self.chromosome)):\n",
+ " if i not in range(cut_point1, cut_point2):\n",
+ " # ...following the vertex ordering in the second parent\n",
+ " for gene in other.chromosome:\n",
+ " if gene in p1_rem:\n",
+ " c1.chromosome[i] = gene\n",
+ " \n",
+ " # (now for the other child)\n",
+ " for gene in self.chromosome:\n",
+ " if gene in p2_rem:\n",
+ " c2.chromosome[i] = gene\n",
+ " \n",
+ " return [Individual_VRPTW(c1), Individual_VRPTW(c2)]\n",
+ " \n",
+ "\n",
+ " def crossover_onepoint(self, other):\n",
+ " \"Retorna dos nuevos individuos del cruzamiento de un punto entre self y other \"\n",
+ " c = random.randrange(len(self.chromosome))\n",
+ " ind1 = Individual_VRPTW(self.chromosome[:c] + other.chromosome[c:])\n",
+ " ind2 = Individual_VRPTW(other.chromosome[:c] + self.chromosome[c:])\n",
+ " return [ind1, ind2] \n",
+ " \n",
+ " def crossover_uniform(self, other):\n",
+ " chromosome1 = []\n",
+ " chromosome2 = []\n",
+ " \"Retorna dos nuevos individuos del cruzamiento uniforme entre self y other \"\n",
+ " for i in range(len(self.chromosome)):\n",
+ " if random.uniform(0, 1) < 0.5:\n",
+ " chromosome1.append(self.chromosome[i])\n",
+ " chromosome2.append(other.chromosome[i])\n",
+ " else:\n",
+ " chromosome1.append(other.chromosome[i])\n",
+ " chromosome2.append(self.chromosome[i])\n",
+ " ind1 = Individual_VRPTW(chromosome1)\n",
+ " ind2 = Individual_VRPTW(chromosome2)\n",
+ " return [ind1, ind2] \n",
+ "\n",
+ " def mutate_position(self):\n",
+ " mutated_ind = Individual_VRPTW(self.chromosome[:])\n",
+ " indexPos = random.randint(0, len(mutated_ind.chromosome)-1)\n",
+ " newPos = random.randint(0, len(mutated_ind.chromosome)-1)\n",
+ " mutated_ind.chromosome[indexPos] = newPos\n",
+ " return mutated_ind\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<b>Funcion de fitness para evaluar un individuo del problema de las n-reinas</b>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 109,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def fitness_VRPTW(chromosome):\n",
+ " \"\"\"Retorna el fitness de un cromosoma en el problema VRPTW (distancia total de todas las rutas) \"\"\"\n",
+ " n = len(chromosome) # No. of vertices\n",
+ " fitness = 10**6\n",
+ " # feasibility\n",
+ " # TODO: considerar todas las restricciones\n",
+ " # desirability\n",
+ " for i in range(0, n):\n",
+ " fitness -= distancia[i][i + 1]\n",
+ " \n",
+ " return fitness"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<b>Funcion para evaluar toda una población de individuos con la funcion de fitnes especificada</b>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def evaluate_population(population, fitness_fn):\n",
+ " \"\"\" Evalua una poblacion de individuos con la funcion de fitness pasada \"\"\"\n",
+ " popsize = len(population)\n",
+ " for i in range(popsize):\n",
+ " if population[i].fitness == -1: # si el individuo no esta evaluado\n",
+ " population[i].fitness = fitness_fn(population[i].chromosome)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<b>Funcion que selecciona con el metodo de la ruleta un par de individuos de population para cruzamiento </b>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 103,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def select_parents_roulette(population):\n",
+ " popsize = len(population)\n",
+ " \n",
+ " # Escoje el primer padre\n",
+ " sumfitness = sum([indiv.fitness for indiv in population]) # suma total del fitness de la poblacion\n",
+ " pickfitness = random.uniform(0, sumfitness) # escoge un numero aleatorio entre 0 y sumfitness\n",
+ " cumfitness = 0 # fitness acumulado\n",
+ " for i in range(popsize):\n",
+ " cumfitness += population[i].fitness\n",
+ " if cumfitness > pickfitness: \n",
+ " iParent1 = i\n",
+ " break\n",
+ " \n",
+ " # Escoje el segundo padre, desconsiderando el padre ya escogido\n",
+ " sumfitness = sumfitness - population[iParent1].fitness # retira el fitness del padre ya escogido\n",
+ " pickfitness = random.uniform(0, sumfitness) # escoge un numero aleatorio entre 0 y sumfitness\n",
+ " cumfitness = 0 # fitness acumulado\n",
+ " for i in range(popsize):\n",
+ " if i == iParent1: continue # si es el primer padre \n",
+ " cumfitness += population[i].fitness\n",
+ " if cumfitness > pickfitness: \n",
+ " iParent2 = i\n",
+ " break \n",
+ " return (population[iParent1], population[iParent2])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<b>Funcion que selecciona sobrevivientes para la sgte generacion, dada la poblacion actual y poblacion de hijos </b>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def select_survivors(population, offspring_population, numsurvivors):\n",
+ " next_population = []\n",
+ " population.extend(offspring_population) # une las dos poblaciones\n",
+ " isurvivors = sorted(range(len(population)), key=lambda i: population[i].fitness, reverse=True)[:numsurvivors]\n",
+ " for i in range(numsurvivors): next_population.append(population[isurvivors[i]])\n",
+ " return next_population"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<b>Algoritmo Genetico</b> \n",
+ "Recibe una poblacion inicial, funcion de fitness, numero de generaciones (ngen) y taza de mutación (pmut)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def genetic_algorithm(population, fitness_fn, ngen=100, pmut=0.1):\n",
+ " \"Algoritmo Genetico \"\n",
+ " \n",
+ " popsize = len(population)\n",
+ " evaluate_population(population, fitness_fn) # evalua la poblacion inicial\n",
+ " ibest = sorted(range(len(population)), key=lambda i: population[i].fitness, reverse=True)[:1]\n",
+ " bestfitness = [population[ibest[0]].fitness]\n",
+ " print(\"Poblacion inicial, best_fitness = {}\".format(population[ibest[0]].fitness))\n",
+ " \n",
+ " for g in range(ngen): # Por cada generacion\n",
+ " \n",
+ " ## Selecciona las parejas de padres para cruzamiento \n",
+ " mating_pool = []\n",
+ " for i in range(int(popsize/2)): mating_pool.append(select_parents_roulette(population)) \n",
+ " \n",
+ " ## Crea la poblacion descendencia cruzando las parejas del mating pool con Recombinación de 1 punto\n",
+ " offspring_population = []\n",
+ " for i in range(len(mating_pool)): \n",
+ " #offspring_population.extend( mating_pool[i][0].crossover_onepoint(mating_pool[i][1]) )\n",
+ " #offspring_population.extend( mating_pool[i][0].crossover_uniform(mating_pool[i][1]) )\n",
+ " offspring_population.extend( mating_pool[i][0].crossover_order(mating_pool[i][1]) )\n",
+ "\n",
+ " ## Aplica el operador de mutacion con probabilidad pmut en cada hijo generado\n",
+ " for i in range(len(offspring_population)):\n",
+ " if random.uniform(0, 1) < pmut: \n",
+ " offspring_population[i] = offspring_population[i].mutate_position()\n",
+ " \n",
+ " ## Evalua la poblacion descendencia\n",
+ " evaluate_population(offspring_population, fitness_fn) # evalua la poblacion inicial\n",
+ " \n",
+ " ## Selecciona popsize individuos para la sgte. generación de la union de la pob. actual y pob. descendencia\n",
+ " population = select_survivors(population, offspring_population, popsize)\n",
+ "\n",
+ " ## Almacena la historia del fitness del mejor individuo\n",
+ " ibest = sorted(range(len(population)), key=lambda i: population[i].fitness, reverse=True)[:1]\n",
+ " bestfitness.append(population[ibest[0]].fitness)\n",
+ " print(\"generacion {}, best_fitness = {}\".format(g, population[ibest[0]].fitness))\n",
+ " \n",
+ " return population[ibest[0]], bestfitness "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " <b>Algoritmo de Busqueda Genetica para el VRPTW</b> "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 117,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def genetic_algorithm_VRPTW(fitness_fn, num_depots=1, num_vehicles=1, vehicle_capacity=200, popsize=10, ngen=1000, pmut=0):\n",
+ " population = []\n",
+ " \n",
+ " # Crea la poblacion inicial con cromosomas aleatorios\n",
+ " for i in range(popsize):\n",
+ " chromosome = [j for j in range(1,num_vertices+1)]\n",
+ " random.shuffle(chromosome)\n",
+ " population.append(Individual_VRPTW(chromosome))\n",
+ " \n",
+ " return genetic_algorithm(population, fitness_fn, ngen, pmut)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def genetic_search_nqueens(fitness_fn, num_queens=10, popsize=10, ngen=100, pmut=0.5):\n",
+ " import random\n",
+ " population = []\n",
+ "\n",
+ " ## Crea la poblacion inicial con cromosomas aleatorios\n",
+ " for i in range(popsize):\n",
+ " chromosome = [j for j in range(1,num_queens+1)]\n",
+ " random.shuffle(chromosome)\n",
+ " population.append( Individual_nqueens(chromosome) )\n",
+ " \n",
+ " ## Crea la poblacion inicial con los siguientes cromosomas \n",
+ " #chromosomes = [[1,3,1,3,1,3,1,3,1,3],\n",
+ " # [2,4,2,4,2,4,2,4,2,4],\n",
+ " # [3,5,3,5,3,5,3,5,3,5],\n",
+ " # [4,6,4,6,4,6,4,6,4,6],\n",
+ " # [5,7,5,7,5,7,5,7,5,7],\n",
+ " # [6,8,6,8,6,8,6,8,6,8],\n",
+ " # [7,9,7,9,7,9,7,9,7,9],\n",
+ " # [8,10,8,10,8,10,8,10,8,10],\n",
+ " # [9,1,9,1,9,1,9,1,9,1],\n",
+ " # [10,2,10,2,10,2,10,2,10,2] ] \n",
+ " #for i in range(popsize):\n",
+ " # population.append( Individual_nqueens(chromosomes[i]) ) \n",
+ " \n",
+ " ## llama al algoritmo genetico para encontrar una solucion al problema de las n reinas\n",
+ " return genetic_algorithm(population, fitness_fn, ngen, pmut)\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Probando el Algoritmo genetico"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 115,
+ "metadata": {},
+ "outputs": [
+ {
+ "ename": "NameError",
+ "evalue": "name 'distancia' is not defined",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
+ "Input \u001b[0;32mIn [115]\u001b[0m, in \u001b[0;36m<cell line: 4>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpyplot\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mplt\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# busca solucion para el problema de 10 reinas. Usa 100 individuos aleatorios, 100 generaciones y taza de mutación de 0.5\u001b[39;00m\n\u001b[0;32m----> 4\u001b[0m best_ind, bestfitness \u001b[38;5;241m=\u001b[39m \u001b[43mgenetic_algorithm_VRPTW\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfitness_VRPTW\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 5\u001b[0m plt\u001b[38;5;241m.\u001b[39mplot(bestfitness)\n\u001b[1;32m 6\u001b[0m plt\u001b[38;5;241m.\u001b[39mshow()\n",
+ "Input \u001b[0;32mIn [113]\u001b[0m, in \u001b[0;36mgenetic_algorithm_VRPTW\u001b[0;34m(fitness_fn, num_vertices, num_depots, num_vehicles, popsize, ngen, pmut)\u001b[0m\n\u001b[1;32m 7\u001b[0m random\u001b[38;5;241m.\u001b[39mshuffle(chromosome)\n\u001b[1;32m 8\u001b[0m population\u001b[38;5;241m.\u001b[39mappend(Individual_VRPTW(chromosome))\n\u001b[0;32m---> 10\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgenetic_algorithm\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpopulation\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfitness_fn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mngen\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpmut\u001b[49m\u001b[43m)\u001b[49m\n",
+ "Input \u001b[0;32mIn [10]\u001b[0m, in \u001b[0;36mgenetic_algorithm\u001b[0;34m(population, fitness_fn, ngen, pmut)\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAlgoritmo Genetico \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 4\u001b[0m popsize \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlen\u001b[39m(population)\n\u001b[0;32m----> 5\u001b[0m \u001b[43mevaluate_population\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpopulation\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfitness_fn\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# evalua la poblacion inicial\u001b[39;00m\n\u001b[1;32m 6\u001b[0m ibest \u001b[38;5;241m=\u001b[39m \u001b[38;5;28msorted\u001b[39m(\u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(population)), key\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mlambda\u001b[39;00m i: population[i]\u001b[38;5;241m.\u001b[39mfitness, reverse\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)[:\u001b[38;5;241m1\u001b[39m]\n\u001b[1;32m 7\u001b[0m bestfitness \u001b[38;5;241m=\u001b[39m [population[ibest[\u001b[38;5;241m0\u001b[39m]]\u001b[38;5;241m.\u001b[39mfitness]\n",
+ "Input \u001b[0;32mIn [7]\u001b[0m, in \u001b[0;36mevaluate_population\u001b[0;34m(population, fitness_fn)\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(popsize):\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m population[i]\u001b[38;5;241m.\u001b[39mfitness \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m: \u001b[38;5;66;03m# si el individuo no esta evaluado\u001b[39;00m\n\u001b[0;32m----> 6\u001b[0m population[i]\u001b[38;5;241m.\u001b[39mfitness \u001b[38;5;241m=\u001b[39m \u001b[43mfitness_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpopulation\u001b[49m\u001b[43m[\u001b[49m\u001b[43mi\u001b[49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mchromosome\u001b[49m\u001b[43m)\u001b[49m\n",
+ "Input \u001b[0;32mIn [109]\u001b[0m, in \u001b[0;36mfitness_VRPTW\u001b[0;34m(chromosome)\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# feasibility\u001b[39;00m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;66;03m# TODO: considerar todas las restricciones\u001b[39;00m\n\u001b[1;32m 7\u001b[0m \u001b[38;5;66;03m# desirability\u001b[39;00m\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m0\u001b[39m, n):\n\u001b[0;32m----> 9\u001b[0m fitness \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[43mdistancia\u001b[49m[i][i \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1\u001b[39m]\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fitness\n",
+ "\u001b[0;31mNameError\u001b[0m: name 'distancia' is not defined"
+ ]
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "best_ind, bestfitness = genetic_algorithm_VRPTW(fitness_VRPTW)\n",
+ "plt.plot(bestfitness)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 141,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Poblacion inicial, best_fitness = 44\n",
+ "generacion 0, best_fitness = 44\n",
+ "generacion 1, best_fitness = 44\n",
+ "generacion 2, best_fitness = 44\n",
+ "generacion 3, best_fitness = 44\n",
+ "generacion 4, best_fitness = 44\n",
+ "generacion 5, best_fitness = 44\n",
+ "generacion 6, best_fitness = 44\n",
+ "generacion 7, best_fitness = 44\n",
+ "generacion 8, best_fitness = 44\n",
+ "generacion 9, best_fitness = 44\n",
+ "generacion 10, best_fitness = 44\n",
+ "generacion 11, best_fitness = 44\n",
+ "generacion 12, best_fitness = 44\n",
+ "generacion 13, best_fitness = 44\n",
+ "generacion 14, best_fitness = 44\n",
+ "generacion 15, best_fitness = 44\n",
+ "generacion 16, best_fitness = 44\n",
+ "generacion 17, best_fitness = 44\n",
+ "generacion 18, best_fitness = 44\n",
+ "generacion 19, best_fitness = 44\n",
+ "generacion 20, best_fitness = 44\n",
+ "generacion 21, best_fitness = 44\n",
+ "generacion 22, best_fitness = 44\n",
+ "generacion 23, best_fitness = 44\n",
+ "generacion 24, best_fitness = 44\n",
+ "generacion 25, best_fitness = 44\n",
+ "generacion 26, best_fitness = 44\n",
+ "generacion 27, best_fitness = 44\n",
+ "generacion 28, best_fitness = 44\n",
+ "generacion 29, best_fitness = 44\n",
+ "generacion 30, best_fitness = 45\n",
+ "generacion 31, best_fitness = 45\n",
+ "generacion 32, best_fitness = 45\n",
+ "generacion 33, best_fitness = 45\n",
+ "generacion 34, best_fitness = 45\n",
+ "generacion 35, best_fitness = 45\n",
+ "generacion 36, best_fitness = 45\n",
+ "generacion 37, best_fitness = 45\n",
+ "generacion 38, best_fitness = 45\n",
+ "generacion 39, best_fitness = 45\n",
+ "generacion 40, best_fitness = 45\n",
+ "generacion 41, best_fitness = 45\n",
+ "generacion 42, best_fitness = 45\n",
+ "generacion 43, best_fitness = 45\n",
+ "generacion 44, best_fitness = 45\n",
+ "generacion 45, best_fitness = 45\n",
+ "generacion 46, best_fitness = 45\n",
+ "generacion 47, best_fitness = 45\n",
+ "generacion 48, best_fitness = 45\n",
+ "generacion 49, best_fitness = 45\n",
+ "generacion 50, best_fitness = 45\n",
+ "generacion 51, best_fitness = 45\n",
+ "generacion 52, best_fitness = 45\n",
+ "generacion 53, best_fitness = 45\n",
+ "generacion 54, best_fitness = 45\n",
+ "generacion 55, best_fitness = 45\n",
+ "generacion 56, best_fitness = 45\n",
+ "generacion 57, best_fitness = 45\n",
+ "generacion 58, best_fitness = 45\n",
+ "generacion 59, best_fitness = 45\n",
+ "generacion 60, best_fitness = 45\n",
+ "generacion 61, best_fitness = 45\n",
+ "generacion 62, best_fitness = 45\n",
+ "generacion 63, best_fitness = 45\n",
+ "generacion 64, best_fitness = 45\n",
+ "generacion 65, best_fitness = 45\n",
+ "generacion 66, best_fitness = 45\n",
+ "generacion 67, best_fitness = 45\n",
+ "generacion 68, best_fitness = 45\n",
+ "generacion 69, best_fitness = 45\n",
+ "generacion 70, best_fitness = 45\n",
+ "generacion 71, best_fitness = 45\n",
+ "generacion 72, best_fitness = 45\n",
+ "generacion 73, best_fitness = 45\n",
+ "generacion 74, best_fitness = 45\n",
+ "generacion 75, best_fitness = 45\n",
+ "generacion 76, best_fitness = 45\n",
+ "generacion 77, best_fitness = 45\n",
+ "generacion 78, best_fitness = 45\n",
+ "generacion 79, best_fitness = 45\n",
+ "generacion 80, best_fitness = 45\n",
+ "generacion 81, best_fitness = 45\n",
+ "generacion 82, best_fitness = 45\n",
+ "generacion 83, best_fitness = 45\n",
+ "generacion 84, best_fitness = 45\n",
+ "generacion 85, best_fitness = 45\n",
+ "generacion 86, best_fitness = 45\n",
+ "generacion 87, best_fitness = 45\n",
+ "generacion 88, best_fitness = 45\n",
+ "generacion 89, best_fitness = 45\n",
+ "generacion 90, best_fitness = 45\n",
+ "generacion 91, best_fitness = 45\n",
+ "generacion 92, best_fitness = 45\n",
+ "generacion 93, best_fitness = 45\n",
+ "generacion 94, best_fitness = 45\n",
+ "generacion 95, best_fitness = 45\n",
+ "generacion 96, best_fitness = 45\n",
+ "generacion 97, best_fitness = 45\n",
+ "generacion 98, best_fitness = 45\n",
+ "generacion 99, best_fitness = 45\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAATz0lEQVR4nO3dYbBc513f8e/PV4kd23GtYDVGVtxrxk47AQKYO2k6pq3HtCHYqkgG3HFJS17AGGZw6xaoiaYzaeKSF9Q0uE4pMxqTkDY0aevS9ta0ZIKNhhkGQiTbJFEUGgUT4iBXchNIlQxKdvffF7tX3tzcq7v3nCvvOavvZ+aOdp/ds/ucOXt++t9nn/ucVBWSpMV1ybw7IEm6sAx6SVpwBr0kLTiDXpIWnEEvSQtu17w7sN4111xTy8vL8+6GJPXK0aNHn6uqPRs91rmgX15e5siRI/PuhiT1SpLPbPaYQzeStOAMeklacAa9JC04g16SFpxBL0kLbuagT7KU5Mkkj07u/3KSp5M8Nfn59k22e3OST01+3rxD/ZYkzWg70yvvBY4DV021/dOqemSzDZK8DPjnwApQwNEkq1X1hSadlSRt30xBn2QfcAfwDuAntvH63wN8qKo+P3mdDwGvB96/zX6qww7/wSme+Iz/d0ttvfLal7L/1Xt3/HVnregfBO4DXrqu/R1J3go8Brylqs6ue/w64LNT95+ZtH2NJHcDdwNcf/31M3ZJXfH2//EJnn7uSyTz7onUb/tfvXc+QZ9kP3Cqqo4muXXqoYPAs8CLgUPATwP3N+lEVR2avAYrKyteCaVnvjIY8f037+Nf/d1vm3dXJG1gli9jbwEOJPkj4APAbUneV1Una+ws8B7gNRts+zngFVP3903atECGo2LXJZbzUldtGfRVdbCq9lXVMnAX8HhV/f0k3wiQJMAbgI9vsPkHgdcl2Z1kN/C6SZsWyGBULC0Z9FJXtVnU7FeS7AECPAX8GECSFeDHqupHqurzSf4F8JHJNvevfTGrxTEcjazopQ7bVtBX1WHg8OT2bZs85wjwI1P33w28u3EP1XmDUbFk0Eud5V/GqjXH6KVuM+jV2rii96MkdZVnp1qzope6zaBXK1XF0DF6qdMMerUyHI3/vs2KXuoug16tDCZB7zx6qbsMerViRS91n0GvVs5V9M66kTrLs1OtWNFL3WfQq5XBaATgrBupwwx6tWJFL3WfQa9WBsO1MXqDXuoqg16tDEcGvdR1Br1aGZZBL3WdQa9Wnh+j96MkdZVnp1pxjF7qPoNerTjrRuo+g16tnJtH71o3UmcZ9GrFil7qPoNerQycXil1nkGvVpx1I3WfZ6dasaKXus+gVyvDyZexjtFL3WXQqxXn0UvdZ9CrlXNj9E6vlDrLoFcrA6dXSp1n0KuVoZcSlDrPs1OtWNFL3WfQq5WhlxKUOs+gVyvOo5e6z6BXKyODXuq8mYM+yVKSJ5M8uq79oSRnNtnmRUnem+RjSY4nOdi2w+oWx+il7ttORX8vcHy6IckKsPs829wJXFpV3wp8J/CjSZa320l1l9eMlbpvpqBPsg+4A3h4qm0JeAC47zybFnBFkl3AS4CvAF9s3Ft1zsBFzaTOm/XsfJBxoI+m2u4BVqvq5Hm2ewT4EnAS+GPg56rq8+uflOTuJEeSHDl9+vSMXVIXWNFL3bdl0CfZD5yqqqNTbXsZD8u8a4vNXwMMgb3ADcBPJvmm9U+qqkNVtVJVK3v27NlO/zVna2vdOEYvddeuGZ5zC3Agye3AZcBVwDHgLHAiCcDlSU5U1Y3rtv1B4Ner6qvAqSS/DawAf7hTO6D5Go5GJHCJQS911pYVfVUdrKp9VbUM3AU8XlW7q+raqlqetH95g5CH8XDNbQBJrgBeC3xyx3qvuRuMympe6rgd/wYtyYEk90/u/gJwZZJjwEeA91TVR3f6PTU/w1E5Pi913CxDN+dU1WHg8AbtV07dXgVWJ7fPMB7L14IaV/TOuJG6zDNUrVjRS91n0KuVwWjkGL3UcQa9WrGil7rPoFcrg6GzbqSuM+jVynBULHm9WKnTDHq1MhgVSzHopS4z6NXKsByjl7rOoFcrw6Hz6KWu8wxVKwNn3UidZ9CrleFoxC6/jJU6zaBXK1b0UvcZ9Gpl6OqVUucZ9GrFil7qPoNerQxdvVLqPM9QtWJFL3WfQa9Whq5eKXWeQa9WBkMreqnrDHq1MhyV8+iljjPo1cp4PXo/RlKXeYaqlYHz6KXOM+jVileYkrrPoFcrXjNW6j6DXq0MR8UlBr3UaQa9WnGtG6n7DHq14l/GSt1n0KsVK3qp+wx6tTJwHr3UeZ6hasWKXuo+g16NVZXz6KUeMOjV2HBUAFb0UsfNHPRJlpI8meTRde0PJTlznu1eneR3khxL8rEkl7XpsLpjMAn6JRc1kzpt1zaeey9wHLhqrSHJCrB7sw2S7ALeB/yDqvr9JN8AfLVhX9UxVvRSP8xU0SfZB9wBPDzVtgQ8ANx3nk1fB3y0qn4foKr+b1UNm3dXXXKuonfWjdRps56hDzIO9NFU2z3AalWdPM92rwQqyQeTPJFkw/8Uktyd5EiSI6dPn56xS5o3K3qpH7YM+iT7gVNVdXSqbS9wJ/CuLTbfBXwX8KbJv29M8t3rn1RVh6pqpapW9uzZs53+a44Go/H/+866kbptljH6W4ADSW4HLmM8Rn8MOAucSAJweZITVXXjum2fAX6rqp4DSPI/gZuBx3ao/5ojK3qpH7as6KvqYFXtq6pl4C7g8araXVXXVtXypP3LG4Q8wAeBb01y+eSL2b8JfGIH+685GgzXxugNeqnLdvxbtCQHktwPUFVfAN4JfAR4Cniiqn5tp99T83Guond6pdRp25leSVUdBg5v0H7l1O1VYHXq/vsYT7HUgnHWjdQPnqFqbK2iX4oVvdRlBr0aOxf0jtFLnWbQqzFn3Uj9YNCrsXPz6P0yVuo0g16NWdFL/WDQq7GBY/RSLxj0auz5it6PkdRlnqFqzIpe6geDXo0NJ1/GOkYvdZtBr8Zc60bqB4NejbnWjdQPBr0aGzi9UuoFg16NDV3UTOoFz1A1ZkUv9YNBr8aGXkpQ6gWDXo1Z0Uv9YNCrMZcplvrBoFdjzqOX+sGgV2OjMuilPjDo1djARc2kXvAMVWOO0Uv9YNCrsbUxemfdSN1m0Kux4WhEApcY9FKnGfRqbDAqq3mpBwx6NTYclePzUg8Y9GpsXNH7EZK6zrNUjVnRS/1g0KuxwWjkGL3UAwa9GrOil/rBoFdjg6GzbqQ+MOjV2HBULHm9WKnzZg76JEtJnkzy6Lr2h5Kc2WLb65OcSfJTTTuq7nHWjdQP2zlL7wWOTzckWQF2z7DtO4H/tY33Ug84Ri/1w0xBn2QfcAfw8FTbEvAAcN8W274BeBo41riX6qTBaMRSDHqp62at6B9kHOijqbZ7gNWqOrnZRkmuBH4aePv5XjzJ3UmOJDly+vTpGbukeRuOXLlS6oMtgz7JfuBUVR2datsL3Am8a4vN3wb8fFWddwy/qg5V1UpVrezZs2frXqsThqMRu/wyVuq8XTM85xbgQJLbgcuAqxgPw5wFTmT8q/vlSU5U1Y3rtv2rwA8k+ZfA1cAoyZ9X1b/ZqR3Q/Awco5d6Ycugr6qDwEGAJLcCP1VV+6efk+TMBiFPVf31qee8DThjyC+OoatXSr2w43PjkhxIcv9Ov666x4pe6odZhm7OqarDwOEN2q+cur0KrG7wnLdtu3fqtOGoePGLlubdDUlb8K9d1JgVvdQPBr0aG7p6pdQLBr0aGwyt6KU+MOjV2HBUzqOXesCgV2PjtW78CEld51mqxgbOo5d6waBXY65eKfWDQa/GvGas1A8GvRqzopf6waBXY47RS/1g0Kux4bC4xKCXOs+gV2PDsqKX+sCgV2MD59FLveBZqsZcj17qB4NejVSVs26knjDo1chwVABW9FIPGPRqZDAJ+iUXNZM6z6BXI1b0Un8Y9GrkXEXvrBup8zxL1YgVvdQfBr0aGYxGAM66kXrAoFcjVvRSfxj0amQwXBujN+ilrjPo1ci5it7plVLnGfRqxFk3Un94lqoRx+il/jDo1YizbqT+MOjVyFpFvxSDXuo6g16NDF3rRuoNg16NOEYv9cfMQZ9kKcmTSR5d1/5QkjObbPO3kxxN8rHJv7e17bC64flZNwa91HW7tvHce4HjwFVrDUlWgN3n2eY54O9U1Z8k+Rbgg8B1TTqqbnm+oveXQqnrZjpLk+wD7gAenmpbAh4A7ttsu6p6sqr+ZHL3GPCSJJc27666wope6o9Zy7EHGQf6aKrtHmC1qk7O+BrfDzxRVWfXP5Dk7iRHkhw5ffr0jC+neRpOplc6Ri9135ZBn2Q/cKqqjk617QXuBN41y5sk+WbgZ4Ef3ejxqjpUVStVtbJnz56ZOq75cq0bqT9mGaO/BTiQ5HbgMsZj9MeAs8CJjOdRX57kRFXduH7jybDPfwV+qKo+vWM911y51o3UH1tW9FV1sKr2VdUycBfweFXtrqprq2p50v7lTUL+auDXgLdU1W/vbNc1TwOnV0q9seNTJpIcSHL/5O49wI3AW5M8Nfn5izv9nnrhDV3UTOqN7UyvpKoOA4c3aL9y6vYqsDq5/TPAz7TqoTrJil7qD8sxNTJ0UTOpNwx6NWJFL/WHQa9Ghv7BlNQbBr0aWZtH7xIIUvd5lqoRlymW+sOgVyMDLzwi9YZBr0ZG5Ri91BcGvRp5fozeoJe6zqBXI8PRiAQuMeilzjPo1chgVFbzUk8Y9GpkOCrH56WeMOjVyLii9+Mj9YFnqhqxopf6w6BXI4PRyDF6qScMejViRS/1h0GvRgZDZ91IfWHQq5HhqFznRuoJg16NOOtG6g/PVDXiGL3UHwa9GnHWjdQfBr0asaKX+sOgVyMDg17qDYNejVjRS/1h0KuRoatXSr1h0KsRh26k/jDo1cjQefRSb3imqhEreqk/DHo1MnQevdQbBr0aGQyt6KW+MOjVyHBU7HJRM6kXDHo1Mp5H78dH6oOZz9QkS0meTPLouvaHkpw5z3YHk5xI8gdJvqdNZ9UdA+fRS72xaxvPvRc4Dly11pBkBdi92QZJXgXcBXwzsBf4jSSvrKphs+6qK/zLWKk/Zgr6JPuAO4B3AD8xaVsCHgB+EHjjJpt+H/CBqjoLPJ3kBPAa4Hda9vvrfPLZL/IP/8OTO/2y2sSzX/xzlmLQS30wa0X/IHAf8NKptnuA1ao6mc1P+OuA3526/8yk7WskuRu4G+D666+fsUtf67JdS9z08isbbavte+XLX8obb/66Qympg7YM+iT7gVNVdTTJrZO2vcCdwK070YmqOgQcAlhZWakmr7F8zRX82zd95050R5IWyiwV/S3AgSS3A5cxHqM/BpwFTkyq+cuTnKiqG9dt+zngFVP3903aJEkvkC1n3VTVwaraV1XLjL9YfbyqdlfVtVW1PGn/8gYhD7AK3JXk0iQ3ADcBv7eD/ZckbWE7s25mkuQAsFJVb62qY0n+E/AJYAD8uDNuJOmFlapGQ+IXzMrKSh05cmTe3ZCkXklytKpWNnrMP22UpAVn0EvSgjPoJWnBGfSStOA692VsktPAZ1q8xDXAczvUnT642PYX3OeLhfu8PX+pqvZs9EDngr6tJEc2++Z5EV1s+wvu88XCfd45Dt1I0oIz6CVpwS1i0B+adwdeYBfb/oL7fLFwn3fIwo3RS5K+1iJW9JKkKQa9JC24hQn6JK+fXID8RJK3zLs/F0KSVyT5zSSfSHIsyb2T9pcl+VCST03+3fQ6vn20/sL0SW5I8uHJsf6PSV487z7utCRXJ3kkySeTHE/y1xb5OCf5J5PP9MeTvD/JZYt4nJO8O8mpJB+fatvwuGbsocn+fzTJzU3fdyGCfnL92l8Avhd4FfD3JhcmXzQD4Cer6lXAa4Efn+znW4DHquom4LHJ/UWydmH6NT8L/PzkGghfAH54Lr26sP418OtV9VeAb2O8/wt5nJNcB/wjxsubfwuwxPjaF4t4nH8ZeP26ts2O6/cyvobHTYwvtfqLTd90IYKe8QXHT1TVH1bVV4APML4w+UKpqpNV9cTk9v9jfPJfx3hf3zt52nuBN8ylgxfA1IXpH57cD3Ab8MjkKQu1vwBJ/gLwN4BfAqiqr1TVn7LAx5nxtTFekmQXcDlwkgU8zlX1W8Dn1zVvdly/D/h3Nfa7wNVJvrHJ+y5K0F8HfHbq/oYXIV8kSZaB7wA+DLy8qk5OHnoWePm8+nUBPMj4wvSjyf1vAP60qgaT+4t4rG8ATgPvmQxZPZzkChb0OFfV54CfA/6YccD/GXCUxT/OazY7rjuWa4sS9BeVJFcC/wX4x1X1xenHajxfdiHmzE5fmH7efXmB7QJuBn6xqr4D+BLrhmkW7DjvZly93gDsBa7g64c3LgoX6rguStBfNBchT/IixiH/K1X1q5Pm/7P2K93k31Pz6t8OW7sw/R8xHo67jfHY9dWTX/FhMY/1M8AzVfXhyf1HGAf/oh7nvwU8XVWnq+qrwK8yPvaLfpzXbHZcdyzXFiXoPwLcNPmW/sWMv8hZnXOfdtxkfPqXgONV9c6ph1aBN09uvxn47y903y6ETS5M/ybgN4EfmDxtYfZ3TVU9C3w2yV+eNH034+suL+RxZjxk89okl08+42v7u9DHecpmx3UV+KHJ7JvXAn82NcSzPVW1ED/A7cD/Bj4N/LN59+cC7eN3Mf617qPAU5Of2xmPWz8GfAr4DeBl8+7rBdj3W4FHJ7e/Cfg94ATwn4FL592/C7C/3w4cmRzr/wbsXuTjDLwd+CTwceDfA5cu4nEG3s/4e4ivMv7N7Yc3O65AGM8m/DTwMcazkhq9r0sgSNKCW5ShG0nSJgx6SVpwBr0kLTiDXpIWnEEvSQvOoJekBWfQS9KC+//Rh3QID9ptGwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "<Figure size 432x288 with 1 Axes>"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 343 ms, sys: 108 ms, total: 450 ms\n",
+ "Wall time: 329 ms\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "# busca solucion para el problema de 10 reinas. Usa 100 individuos aleatorios, 100 generaciones y taza de mutación de 0.5\n",
+ "best_ind, bestfitness = genetic_search_nqueens(fitness_nqueens, 10, 100, 100, 0.90)\n",
+ "plt.plot(bestfitness)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Lectura de datos"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 139,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CUST NO.XCOORD. YCOORD. DEMAND READY TIME DUE DATE SERVICE TIME\n",
+ "1 40 50 0 0 240 0 \n",
+ "2 25 85 20 145 175 10 \n",
+ "3 22 75 30 50 80 10 \n",
+ "4 22 85 10 109 139 10 \n",
+ "5 20 80 40 141 171 10 \n",
+ "6 20 85 20 41 71 10 \n",
+ "7 18 75 20 95 125 10 \n",
+ "8 15 75 20 79 109 10 \n",
+ "9 15 80 10 91 121 10 \n",
+ "10 10 35 20 91 121 10 \n",
+ "11 10 40 30 119 149 10 \n",
+ "12 8 40 40 59 89 10 \n",
+ "13 8 45 20 64 94 10 \n",
+ "14 5 35 10 142 172 10 \n",
+ "15 5 45 10 35 65 10 \n",
+ "16 2 40 20 58 88 10 \n",
+ "17 0 40 20 72 102 10 \n",
+ "18 0 45 20 149 179 10 \n",
+ "19 44 5 20 87 117 10 \n",
+ "20 42 10 40 72 102 10 \n",
+ "21 42 15 10 122 152 10 \n",
+ "22 40 5 10 67 97 10 \n",
+ "23 40 15 40 92 122 10 \n",
+ "24 38 5 30 65 95 10 \n",
+ "25 38 15 10 148 178 10 \n",
+ "26 35 5 20 154 184 10 \n",
+ "27 95 30 30 115 145 10 \n",
+ "28 95 35 20 62 92 10 \n",
+ "29 92 30 10 62 92 10 \n",
+ "30 90 35 10 67 97 10 \n",
+ "31 88 30 10 74 104 10 \n",
+ "32 88 35 20 61 91 10 \n",
+ "33 87 30 10 131 161 10 \n",
+ "34 85 25 10 51 81 10 \n",
+ "35 85 35 30 111 141 10 \n",
+ "36 67 85 20 139 169 10 \n",
+ "37 65 85 40 43 73 10 \n",
+ "38 65 82 10 124 154 10 \n",
+ "39 62 80 30 75 105 10 \n",
+ "40 60 80 10 37 67 10 \n",
+ "41 60 85 30 85 115 10 \n",
+ "42 58 75 20 92 122 10 \n",
+ "43 55 80 10 33 63 10 \n",
+ "44 55 85 20 128 158 10 \n",
+ "45 55 82 10 64 94 10 \n",
+ "46 20 82 10 37 67 10 \n",
+ "47 18 80 10 113 143 10 \n",
+ "48 2 45 10 45 75 10 \n",
+ "49 42 5 10 151 181 10 \n",
+ "50 42 12 10 104 134 10 \n",
+ "51 72 35 30 116 146 10 \n",
+ "52 55 20 19 83 113 10 \n",
+ "53 25 30 3 52 82 10 \n",
+ "54 20 50 5 91 121 10 \n",
+ "55 55 60 16 139 169 10 \n",
+ "56 30 60 16 140 170 10 \n",
+ "57 50 35 19 130 160 10 \n",
+ "58 30 25 23 96 126 10 \n",
+ "59 15 10 20 152 182 10 \n",
+ "60 10 20 19 42 72 10 \n",
+ "61 15 60 17 155 185 10 \n",
+ "62 45 65 9 66 96 10 \n",
+ "63 65 35 3 52 82 10 \n",
+ "64 65 20 6 39 69 10 \n",
+ "65 45 30 17 53 83 10 \n",
+ "66 35 40 16 11 41 10 \n",
+ "67 41 37 16 133 163 10 \n",
+ "68 64 42 9 70 100 10 \n",
+ "69 40 60 21 144 174 10 \n",
+ "70 31 52 27 41 71 10 \n",
+ "71 35 69 23 180 210 10 \n",
+ "72 65 55 14 65 95 10 \n",
+ "73 63 65 8 30 60 10 \n",
+ "74 2 60 5 77 107 10 \n",
+ "75 20 20 8 141 171 10 \n",
+ "76 5 5 16 74 104 10 \n",
+ "77 60 12 31 75 105 10 \n",
+ "78 23 3 7 150 180 10 \n",
+ "79 8 56 27 90 120 10 \n",
+ "80 6 68 30 89 119 10 \n",
+ "81 47 47 13 192 222 10 \n",
+ "82 49 58 10 86 116 10 \n",
+ "83 27 43 9 42 72 10 \n",
+ "84 37 31 14 35 65 10 \n",
+ "85 57 29 18 96 126 10 \n",
+ "86 63 23 2 87 117 10 \n",
+ "87 21 24 28 87 117 10 \n",
+ "88 12 24 13 90 120 10 \n",
+ "89 24 58 19 67 97 10 \n",
+ "90 67 5 25 144 174 10 \n",
+ "91 37 47 6 86 116 10 \n",
+ "92 49 42 13 167 197 10 \n",
+ "93 53 43 14 14 44 10 \n",
+ "94 61 52 3 178 208 10 \n",
+ "95 57 48 23 95 125 10 \n",
+ "96 56 37 6 34 64 10 \n",
+ "97 55 54 26 132 162 10 \n",
+ "98 4 18 35 120 150 10 \n",
+ "99 26 52 9 46 76 10 \n",
+ "100 26 35 15 77 107 10 \n",
+ "101 31 67 3 180 210 10 \n"
+ ]
+ }
+ ],
+ "source": [
+ "with open('data/RC101.csv', newline='') as csvfile:\n",
+ " orders = csv.reader(csvfile)\n",
+ " for row in orders:\n",
+ " print(f\"{row[0]:8}{row[1]:8}{row[2]:8}{row[3]:8}{row[4]:12}{row[5]:12}{row[6]:12}\")\n",
+ " #print(\", \".join(row))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/test/data/RC101.csv b/test/data/RC101.csv
new file mode 100644
index 0000000..ff64970
--- /dev/null
+++ b/test/data/RC101.csv
@@ -0,0 +1,102 @@
+CUST NO.,XCOORD.,YCOORD.,DEMAND,READY TIME,DUE DATE,SERVICE TIME
+1,40,50,0,0,240,0
+2,25,85,20,145,175,10
+3,22,75,30,50,80,10
+4,22,85,10,109,139,10
+5,20,80,40,141,171,10
+6,20,85,20,41,71,10
+7,18,75,20,95,125,10
+8,15,75,20,79,109,10
+9,15,80,10,91,121,10
+10,10,35,20,91,121,10
+11,10,40,30,119,149,10
+12,8,40,40,59,89,10
+13,8,45,20,64,94,10
+14,5,35,10,142,172,10
+15,5,45,10,35,65,10
+16,2,40,20,58,88,10
+17,0,40,20,72,102,10
+18,0,45,20,149,179,10
+19,44,5,20,87,117,10
+20,42,10,40,72,102,10
+21,42,15,10,122,152,10
+22,40,5,10,67,97,10
+23,40,15,40,92,122,10
+24,38,5,30,65,95,10
+25,38,15,10,148,178,10
+26,35,5,20,154,184,10
+27,95,30,30,115,145,10
+28,95,35,20,62,92,10
+29,92,30,10,62,92,10
+30,90,35,10,67,97,10
+31,88,30,10,74,104,10
+32,88,35,20,61,91,10
+33,87,30,10,131,161,10
+34,85,25,10,51,81,10
+35,85,35,30,111,141,10
+36,67,85,20,139,169,10
+37,65,85,40,43,73,10
+38,65,82,10,124,154,10
+39,62,80,30,75,105,10
+40,60,80,10,37,67,10
+41,60,85,30,85,115,10
+42,58,75,20,92,122,10
+43,55,80,10,33,63,10
+44,55,85,20,128,158,10
+45,55,82,10,64,94,10
+46,20,82,10,37,67,10
+47,18,80,10,113,143,10
+48,2,45,10,45,75,10
+49,42,5,10,151,181,10
+50,42,12,10,104,134,10
+51,72,35,30,116,146,10
+52,55,20,19,83,113,10
+53,25,30,3,52,82,10
+54,20,50,5,91,121,10
+55,55,60,16,139,169,10
+56,30,60,16,140,170,10
+57,50,35,19,130,160,10
+58,30,25,23,96,126,10
+59,15,10,20,152,182,10
+60,10,20,19,42,72,10
+61,15,60,17,155,185,10
+62,45,65,9,66,96,10
+63,65,35,3,52,82,10
+64,65,20,6,39,69,10
+65,45,30,17,53,83,10
+66,35,40,16,11,41,10
+67,41,37,16,133,163,10
+68,64,42,9,70,100,10
+69,40,60,21,144,174,10
+70,31,52,27,41,71,10
+71,35,69,23,180,210,10
+72,65,55,14,65,95,10
+73,63,65,8,30,60,10
+74,2,60,5,77,107,10
+75,20,20,8,141,171,10
+76,5,5,16,74,104,10
+77,60,12,31,75,105,10
+78,23,3,7,150,180,10
+79,8,56,27,90,120,10
+80,6,68,30,89,119,10
+81,47,47,13,192,222,10
+82,49,58,10,86,116,10
+83,27,43,9,42,72,10
+84,37,31,14,35,65,10
+85,57,29,18,96,126,10
+86,63,23,2,87,117,10
+87,21,24,28,87,117,10
+88,12,24,13,90,120,10
+89,24,58,19,67,97,10
+90,67,5,25,144,174,10
+91,37,47,6,86,116,10
+92,49,42,13,167,197,10
+93,53,43,14,14,44,10
+94,61,52,3,178,208,10
+95,57,48,23,95,125,10
+96,56,37,6,34,64,10
+97,55,54,26,132,162,10
+98,4,18,35,120,150,10
+99,26,52,9,46,76,10
+100,26,35,15,77,107,10
+101,31,67,3,180,210,10